ترغب بنشر مسار تعليمي؟ اضغط هنا

Walking behavior in a circular arena modified by pulsed light stimulation in Drosophila melanogaster w1118 line

101   0   0.0 ( 0 )
 نشر من قبل Chengfeng Xiao
 تاريخ النشر 2017
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Drosophila melanogaster white-eyed w1118 line serves as a blank control, allowing genetic recombination of any gene of interest along with a readily recognizable marker. w1118 flies display behavioral susceptibility to environmental stimulation such as light. It is of great importance to characterize the behavioral performance of w1118 flies because this would provide a baseline from which the effect of the gene of interest could be differentiated. Little work has been performed to characterize the walking behavior in adult w1118 flies. Here we show that pulsed light stimulation increased the regularity of walking trajectories of w1118 flies in circular arenas. We statistically modeled the distribution of distances to center and extracted the walking structures of w1118 flies. Pulsed light stimulation redistributed the time proportions for individual walking structures. Specifically, pulsed light stimulation reduced the episodes of crossing over the central region of the arena. An addition of four genomic copies of mini-white, a common marker gene for eye color, mimicked the effect of pulsed light stimulation in reducing crossing in a circular arena. The reducing effect of mini-white was copy-number-dependent. These findings highlight the rhythmic light stimulation-evoked modifications of walking behavior in w1118 flies and an unexpected behavioral consequence of mini-white in transgenic flies carrying w1118 isogenic background.

قيم البحث

اقرأ أيضاً

Aging affects almost all aspects of an organism -- its morphology, its physiology, its behavior. Isolating which biological mechanisms are regulating these changes, however, has proven difficult, potentially due to our inability to characterize the f ull repertoire of an animals behavior across the lifespan. Using data from fruit flies (D. melanogaster) we measure the full repertoire of behaviors as a function of age. We observe a sexually dimorphic pattern of changes in the behavioral repertoire during aging. Although the stereotypy of the behaviors and the complexity of the repertoire overall remains relatively unchanged, we find evidence that the observed alterations in behavior can be explained by changing the flys overall energy budget, suggesting potential connections between metabolism, aging, and behavior.
Tracking the dynamics of fluorescent nanoparticles during embryonic development allows insights into the physical state of the embryo and, potentially, molecular processes governing developmental mechanisms. In this work, we investigate the motion of individual fluorescent nanodiamonds micro-injected into Drosophila melanogaster embryos prior to cellularisation. Fluorescence correlation spectroscopy and wide-field imaging techniques are applied to individual fluorescent nanodiamonds in blastoderm cells during stage 5 of development to a depth of ~40 mu m. The majority of nanodiamonds in the blastoderm cells during cellularisation exhibit free diffusion with an average diffusion coefficient of (6 $pm$ 3) x 10$^{-3}$ mu m$^2$/s, (mean $pm$ SD). Driven motion in the blastoderm cells was also observed with an average velocity of 0.13 $pm$ 0.10 mu m/s (mean $pm$ SD) mu m/s and an average applied force of 0.07 $pm$ 0.05 pN (mean $pm$ SD). Nanodiamonds in the periplasm between the nuclei and yolk were also found to undergo free diffusion with a significantly larger diffusion coefficient of (63 $pm$ 35) x10$^{-3}$ mu m$^2$/s (mean $pm$ SD). Driven motion in this region exhibited similar average velocities and applied forces compared to the blastoderm cells indicating the transport dynamics in the two cytoplasmic regions are analogous.
We present experimental results demonstrating that, relative to continuous illumination, an increase of a factor of 3-10 in the photon efficiency of algal photo-synthesis is attainable via the judicious application of pulsed light for light intensiti es of practical interest (e.g., average-to-peak solar photon flux). We also propose a simple model that can account for all the measurements. The model (1) reflects the essential rate-limiting elements in bio-productivity, (2) incorporates the impact of photon arrival-time statistics and (3) accounts for how the enhancement in photon efficiency depends on the timescales of light pulsing and photon flux density. The key is avoiding clogging of the photosynthetic pathway by properly timing the light-dark cycles experienced by algal cells. We show how this can be realized with pulsed light sources, or by producing pulsed-light effects from continuous illumination via turbulent mixing in dense algal cultures in thin photo-bioreactors.
Drosophila melanogaster hemocytes are highly motile cells that are crucial for successful embryogenesis and have important roles in the organisms immunological response. Hemocyte motion was measured using selective plane illumination microscopy. Ever y hemocyte cell in one half of an embryo was tracked during embryogenesis and analysed using a deep learning neural network. The anomalous transport of the cells was well described by fractional Brownian motion that was heterogeneous in both time and space. Hemocyte motion became less persistent over time. LanB1 and SCAR mutants disrupted the collective cellular motion and reduced its persistence due to the modification of viscoelasticity and actin-based motility respectively. The anomalous motility of the hemocytes oscillated in time with alternating epoques of varying persistent motion. Touching hemocytes experience synchronised contact inhibition of locomotion; an anomalous tango. A quantitative statistical framework is presented for hemocyte motility which provides new biological insights.
Understanding and even defining what constitutes animal interactions remains a challenging problem. Correlational tools may be inappropriate for detecting communication between a set of many agents exhibiting nonlinear behavior. A different approach is to define coordinated motions in terms of an information theoretic channel of direct causal information flow. In this work, we consider time series data obtained by an experimental protocol of optical tracking of the insect species Chironomus riparius. The data constitute reconstructed 3-D spatial trajectories of the insects flight trajectories and kinematics. We present an application of the optimal causation entropy (oCSE) principle to identify direct causal relationships or information channels among the insects. The collection of channels inferred by oCSE describes a network of information flow within the swarm. We find that information channels with a long spatial range are more common than expected under the assumption that causal information flows should be spatially localized. The tools developed herein are general and applicable to the inference and study of intercommunication networks in a wide variety of natural settings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا