ﻻ يوجد ملخص باللغة العربية
Here we report on the production and tomography of genuinely entangled Greenberger-Horne-Zeilinger states with up to 10 qubits connecting to a bus resonator in a superconducting circuit, where the resonator-mediated qubit-qubit interactions are used to controllably entangle multiple qubits and to operate on different pairs of qubits in parallel. The resulting 10-qubit density matrix is unambiguously probed, with a fidelity of $0.668 pm 0.025$. Our results demonstrate the largest entanglement created so far in solid-state architectures, and pave the way to large-scale quantum computation.
Building a quantum computer is a daunting challenge since it requires good control but also good isolation from the environment to minimize decoherence. It is therefore important to realize quantum gates efficiently, using as few operations as possib
We report the experimental realization of a hybrid quantum circuit combining a superconducting qubit and an ensemble of electronic spins. The qubit, of the transmon type, is coherently coupled to the spin ensemble consisting of nitrogen-vacancy (NV)
A localized qubit entangled with a propagating quantum field is well suited to study non-local aspects of quantum mechanics and may also provide a channel to communicate between spatially separated nodes in a quantum network. Here, we report the on d
The engineering of Kerr interactions has great potential for quantum information processing applications in multipartite quantum systems and for investigation of many-body physics in a complex cavity-qubit network. We study how coupling multiple diff
A major challenge in the field of quantum computing is the construction of scalable qubit coupling architectures. Here, we demonstrate a novel tuneable coupling circuit that allows superconducting qubits to be coupled over long distances. We show tha