ﻻ يوجد ملخص باللغة العربية
We consider the Kitaev chain model with finite and infinite range in the hopping and pairing parameters, looking in particular at the appearance of Majorana zero energy modes and massive edge modes. We study the system both in the presence and in the absence of time reversal symmetry, by means of topological invariants and exact diagonalization, disclosing very rich phase diagrams. In particular, for extended hopping and pairing terms, we can get as many Majorana modes at each end of the chain as the neighbors involved in the couplings. Finally we generalize the transfer matrix approach useful to calculate the zero-energy Majorana modes at the edges for a generic number of coupled neighbors.
We analyze the quantum phases, correlation functions and edge modes for a class of spin-1/2 and fermionic models related to the 1D Ising chain in the presence of a transverse field. These models are the Ising chain with anti-ferromagnetic long-range
We propose and analyze a generalization of the Kitaev chain for fermions with long-range $p$-wave pairing, which decays with distance as a power-law with exponent $alpha$. Using the integrability of the model, we demonstrate the existence of two type
We study the effects of disorder on a Kitaev chain with longer-range hopping and pairing terms which is capable of forming local zero energy excitations and, hence, serves as a minimal model for localization-protected edge qubits. The clean phase dia
We describe a method to probe the quantum phase transition between the short-range topological phase and the long-range topological phase in the superconducting Kitaev chain with long-range pairing, both exhibiting subgap modes localized at the edges
A generalization of the Mattis-Nam model (J.Math.Phys., 13 (1972), 1185), which takes into account a correlated hopping and pairing of electrons, is proposed, its exact solution is obtained. In the framework of the model the stability of the zero ene