ترغب بنشر مسار تعليمي؟ اضغط هنا

Extended Kitaev chain with longer-range hopping and pairing

89   0   0.0 ( 0 )
 نشر من قبل Luca Dell'Anna
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the Kitaev chain model with finite and infinite range in the hopping and pairing parameters, looking in particular at the appearance of Majorana zero energy modes and massive edge modes. We study the system both in the presence and in the absence of time reversal symmetry, by means of topological invariants and exact diagonalization, disclosing very rich phase diagrams. In particular, for extended hopping and pairing terms, we can get as many Majorana modes at each end of the chain as the neighbors involved in the couplings. Finally we generalize the transfer matrix approach useful to calculate the zero-energy Majorana modes at the edges for a generic number of coupled neighbors.

قيم البحث

اقرأ أيضاً

We analyze the quantum phases, correlation functions and edge modes for a class of spin-1/2 and fermionic models related to the 1D Ising chain in the presence of a transverse field. These models are the Ising chain with anti-ferromagnetic long-range interactions that decay with distance $r$ as $1/r^alpha$, as well as a related class of fermionic Hamiltonians that generalise the Kitaev chain, where both the hopping and pairing terms are long-range and their relative strength can be varied. For these models, we provide the phase diagram for all exponents $alpha$, based on an analysis of the entanglement entropy, the decay of correlation functions, and the edge modes in the case of open chains. We demonstrate that violations of the area law can occur for $alpha lesssim1$, while connected correlation functions can decay with a hybrid exponential and power-law behaviour, with a power that is $alpha$-dependent. Interestingly, for the fermionic models we provide an exact analytical derivation for the decay of the correlation functions at every $alpha$. Along the critical lines, for all models breaking of conformal symmetry is argued at low enough $alpha$. For the fermionic models we show that the edge modes, massless for $alpha gtrsim 1$, can acquire a mass for $alpha < 1$. The mass of these modes can be tuned by varying the relative strength of the kinetic and pairing terms in the Hamiltonian. Interestingly, for the Ising chain a similar edge localization appears for the first and second excited states on the paramagnetic side of the phase diagram, where edge modes are not expected. We argue that, at least for the fermionic chains, these massive states correspond to the appearance of new phases, notably approached via quantum phase transitions without mass gap closure. Finally, we discuss the possibility to detect some of these effects in experiments with cold trapped ions.
We propose and analyze a generalization of the Kitaev chain for fermions with long-range $p$-wave pairing, which decays with distance as a power-law with exponent $alpha$. Using the integrability of the model, we demonstrate the existence of two type s of gapped regimes, where correlation functions decay exponentially at short range and algebraically at long range ($alpha > 1$) or purely algebraically ($alpha < 1$). Most interestingly, along the critical lines, long-range pairing is found to break conformal symmetry for sufficiently small $alpha$. This is accompanied by a violation of the area law for the entanglement entropy in large parts of the phase diagram in the presence of a gap, and can be detected via the dynamics of entanglement following a quench. Some of these features may be relevant for current experiments with cold atomic ions.
We study the effects of disorder on a Kitaev chain with longer-range hopping and pairing terms which is capable of forming local zero energy excitations and, hence, serves as a minimal model for localization-protected edge qubits. The clean phase dia gram hosts regions with 0, 1, and 2 Majorana zero-modes (MZMs) per edge. Using a semi-analytic approach corroborated by numerical calculations of the entanglement degeneracy, we show how phase boundaries evolve under the influence of disorder. While in general the 2 MZM region is stable with respect to moderate disorder, stronger values drive transition towards the topologically trivial phase. We uncover regions where the addition of disorder induces local zero-modes absent for the corresponding clean system. Interestingly, we discover that disorder destroys any direct transition between phases with zero and two MZMs by creating a tricritical point at the 2-0 MZM boundary of the clean system. Finally, motivated by recent experiments, we calculate the characteristic signatures of the disorder phase diagram as measured in dynamical local and non-local qubit correlation functions. Our work provides a minimal starting point to investigate the coherence properties of local qubits in the presence of disorder.
We describe a method to probe the quantum phase transition between the short-range topological phase and the long-range topological phase in the superconducting Kitaev chain with long-range pairing, both exhibiting subgap modes localized at the edges . The method relies on the effects of the finite mass of the subgap edge modes in the long-range regime (which survives in the thermodynamic limit) on the single-particle scattering coefficients through the chain connected to two normal leads. Specifically, we show that, when the leads are biased at a voltage V with respect to the superconducting chain, the Fano factor is either zero (in the short-range correlated phase) or 2e (in the long-range correlated phase). As a result, we find that the Fano factor works as a directly measurable quantity to probe the quantum phase transition between the two phases. In addition, we note a remarkable critical fractionalization effect in the Fano factor, which is exactly equal to e along the quantum critical line. Finally, we note that a dual implementation of our proposed device makes it suitable as a generator of large-distance entangled two-particle states.
64 - Igor N.Karnaukhov 2019
A generalization of the Mattis-Nam model (J.Math.Phys., 13 (1972), 1185), which takes into account a correlated hopping and pairing of electrons, is proposed, its exact solution is obtained. In the framework of the model the stability of the zero ene rgy Majorana fermions localized at the boundaries is studied in the chain in which electrons interact through both the on-site Hubbard interaction and the correlated hopping and pairing. The ground-state phase diagram of the model is calculated, the region of existence of topological states is determined. It is shown that low-energy excitations destroy bonds between electrons in the chain, leading to an insulator state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا