ﻻ يوجد ملخص باللغة العربية
We study the dynamics of a classical disordered macroscopic model completely isolated from the environment reproducing, in a classical setting, the quantum quench protocol. We show that, depending on the pre and post quench parameters the system approaches equilibrium, succeeding to act as a bath on itself, or remains out of equilibrium, in two different ways. In one of the latter, the system stays confined in a metastable state in which it undergoes stationary dynamics characterised by a single temperature. In the other, the system ages and its dynamics are characterised by two temperatures associated to observations made at short and long time differences (high and low frequencies). The parameter dependence of the asymptotic states is rationalised in terms of a dynamic phase diagram with one equilibrium and two out of equilibrium phases. Aspects of pre-thermalisation are observed and discussed. Similarities and differences with the dynamics of the dissipative model are also explained.
We study the Hamiltonian dynamics of the spherical spin model with fully-connected two-body interactions drawn from a Gaussian probability distribution. In the statistical physics framework, the potential energy is of the so-called $p=2$ spherical di
We study a quantum spin-1/2 chain that is dual to the canonical problem of non-equilibrium Kawasaki dynamics of a classical Ising chain coupled to a thermal bath. The Hamiltonian is obtained for the general disordered case with non-uniform Ising coup
We review generalized Fluctuation-Dissipation Relations which are valid under general conditions even in ``non-standard systems, e.g. out of equilibrium and/or without a Hamiltonian structure. The response functions can be expressed in terms of suita
Equilibrium is a rather ideal situation, the exception rather than the rule in Nature. Whenever the external or internal parameters of a physical system are varied its subsequent relaxation to equilibrium may be either impossible or take very long ti
We propose a simple procedure by which the interaction parameters of the classical spin Hamiltonian can be determined from the knowledge of four-point correlation functions and specific heat. The proposal is demonstrated by using the correlation and