ﻻ يوجد ملخص باللغة العربية
The many-body radiative heat transfer theory [P. Ben-Abdallah, S.-A. Biehs, and K. Joulain, Phys. Rev. Lett. 107, 114301 (2011)] only considered the contribution from the electric dipole moment. For metal particles, however, the magnetic dipole moment due to eddy current plays an important role, which can further couple with the electric dipole moment to introduce crossed terms. In this work, we develop coupled electric and magnetic dipole (CEMD) approach for the radiative heat transfer in a collection of objects in mutual interaction. Due to the coupled electric and magnetic interactions, four terms, namely the electric-electric, the electric-magnetic, the magnetic-electric and the magnetic-magnetic terms, contribute to the radiative heat flux and the local energy density. The CEMD is applied to study the radiative heat transfer between various dimers of nanoparticles. It is found that each of the four terms can dominate the radiative heat transfer depending on the position and composition of particles. Moreover, near-field many-body interactions are studied by CEMD considering both dielectric and metallic nanoparticles. The near-field radiative heat flux and local energy density can be greatly increased when the particles are in coupled resonances. Surface plasmon polariton and surface phonon polariton can be coupled to enhance the radiative heat flux.
Many-body physics aims to understand emergent properties of systems made of many interacting objects. This article reviews recent progress on the topic of radiative heat transfer in many-body systems consisting of thermal emitters interacting in the
A general theory of photon-mediated energy and momentum transfer in N-body planar systems out of thermal equilibrium is introduced. It is based on the combination of the scattering theory and the fluctuational-electrodynamics approach in many-body sy
We introduce a local radiative heat-pumping effect between two bodies in a many-body system, obtained by periodically modulating both the temperature and the position of an intermediate object using an external source of energy. We show that the magn
Radiative heat transfer between two bodies saturates at very short separation distances due to the nonlocal optical response of the materials. In this work, we show that the presence of radiative interactions with a third body or external bath can al
Radiative thermal diodes based on two-element structures rectify heat flows thanks to a temperature dependence of material optical properties. The heat transport asymmetry through these systems, however, remains weak without a significant change in m