ﻻ يوجد ملخص باللغة العربية
We investigate the photoluminescence of interlayer excitons in heterostructures consisting of monolayer MoSe2 and WSe2 at low temperatures. Surprisingly, we find a doublet structure for such interlayer excitons. Both peaks exhibit long photoluminescence lifetimes of several ten nanoseconds up to 100 ns at low temperatures, which verifies the interlayer nature of both. The peak energy and linewidth of both show unusual temperature and power dependences. In particular, we observe a blue-shift of their emission energy for increasing excitation powers. At a low excitation power and low temperatures, the energetically higher peak shows several spikes. We explain the findings by two sorts of interlayer excitons; one that is indirect in real space but direct in reciprocal space, and the other one being indirect in both spaces. Our results provide fundamental insights into long-lived interlayer states in van der Waals heterostructures with possible bosonic many-body interactions
Monolayers of transition metal dichalcogenides (TMDCs) feature exceptional optical properties that are dominated by excitons, tightly bound electron-hole pairs. Forming van der Waals heterostructures by deterministically stacking individual monolayer
Indirect excitons (IXs) in van der Waals transition-metal dichalcogenide (TMD) heterostructures are characterized by a high binding energy making them stable at room temperature and giving the opportunity for exploring fundamental phenomena in excito
Throughout the years, strongly correlated coherent states of excitons have been the subject of intense theoretical and experimental studies. This topic has recently boomed due to new emerging quantum materials such as van der Waals (vdW) bound atomic
Atomistic van der Waals heterostacks are ideal systems for high-temperature exciton condensation because of large exciton binding energies and long lifetimes. Charge transport and electron energy-loss spectroscopy showed first evidence of excitonic m
Vertically stacked van der Waals heterostructures constitute a promising platform for providing tailored band alignment with enhanced excitonic systems. Here we report observations of neutral and charged interlayer excitons in trilayer WSe2-MoSe2-WSe