ترغب بنشر مسار تعليمي؟ اضغط هنا

Witt differentials in the h-topology

120   0   0.0 ( 0 )
 نشر من قبل Lance Miller
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent important and powerful frameworks for the study of differential forms by Huber-Joerder and Huber-Kebekus-Kelly based on Voevodskys h-topology have greatly simplified and unified many approaches. This article builds towards the goal of putting Illusies de Rham-Witt complex in the same framework by exploring the h-sheafification of the rational de Rham-Witt differentials. Assuming resolution of singularities in positive characteristic one recovers a complete cohomological h-descent for all terms of the complex. We also provide unconditional h-descent for the global sections and draw the expected conclusions. The approach is to realize that a certain right Kan extension introduced by Huber-Kebekus-Kelly takes the sheaf of rational de Rham-Witt forms to a qfh-sheaf. As such, we state and prove many results about qfh-sheaves which are of independent interest.

قيم البحث

اقرأ أيضاً

A $k$-differential on a Riemann surface is a section of the $k$-th power of the canonical bundle. Loci of $k$-differentials with prescribed number and multiplicities of zeros and poles form a natural stratification for the moduli space of $k$-differe ntials. The classification of connected components of the strata of $k$-differentials was known for holomorphic differentials, meromorphic differentials and quadratic differentials with at worst simple poles by Kontsevich--Zorich, Boissy and Lanneau, respectively. Built on their work we develop new techniques to study connected components of the strata of $k$-differentials for general $k$. As an application, we give a complete classification of connected components of the strata of quadratic differentials with arbitrary poles. Moreover, we distinguish certain components of the strata of $k$-differentials by generalizing the hyperelliptic structure and spin parity for higher $k$. We also describe an approach to determine explicitly parities of $k$-differentials in genus zero and one, which inspires an amusing conjecture in number theory. A key viewpoint we use is the notion of multi-scale $k$-differentials introduced by Bainbridge--Chen--Gendron--Grushevsky--Moller for $k = 1$ and extended by Costantini--Moller--Zachhuber for all $k$.
We present a list of problems in arithmetic topology posed at the June 2019 PIMS/NSF workshop on Arithmetic Topology. Three problem sessions were hosted during the workshop in which participants proposed open questions to the audience and engaged in shared discussions from their own perspectives as working mathematicians across various fields of study. Participants were explicitly asked to provide problems of various levels of difficulty, with the goal of capturing a cross-section of exciting challenges in the field that could help guide future activity. The problems, together with references and brief discussions when appropriate, are collected below into three categories: 1) topological analogues of arithmetic phenomena, 2) point counts, stability phenomena and the Grothendieck ring, and 3) tools, methods and examples.
We prove the quasimodularity of generating functions for counting pillowcase covers, with and without Siegel-Veech weight. Similar to prior work on torus covers, the proof is based on analyzing decompositions of half-translation surfaces into horizon tal cylinders. It provides an alternative proof of the quasimodularity results of Eskin-Okounkov and a practical method to compute area Siegel-Veech constants. A main new technical tool is a quasi-polynomiality result for 2-orbifold Hurwitz numbers with completed cycles.
We construct an explicit filtration of the ring of algebraic power series by finite dimensional constructible sets, measuring the complexity of these series. As an application, we give a bound on the dimension of the set of algebraic power series of bounded complexity lying on an algebraic variety defined over the field of power series.
73 - James Borger 2010
This is an account of the algebraic geometry of Witt vectors and arithmetic jet spaces. The usual, p-typical Witt vectors of p-adic schemes of finite type are already reasonably well understood. The main point here is to generalize this theory in two ways. We allow not just p-typical Witt vectors but those taken with respect to any set of primes in any ring of integers in any global field, for example. This includes the big Witt vectors. We also allow not just p-adic schemes of finite type but arbitrary algebraic spaces over the ring of integers in the global field. We give similar generalizations of Buiums formal arithmetic jet functor, which is dual to the Witt functor. We also give concrete geometric descriptions of Witt spaces and arithmetic jet spaces and investigate whether a number of standard geometric properties are preserved by these functors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا