ﻻ يوجد ملخص باللغة العربية
Long carrier lifetimes and diffusion lengths form the basis for the successful application of the organic-inorganic perovskite (CH$_3$NH$_3$)PbI$_3$ in solar cells and lasers. The mechanism behind the long carrier lifetimes is still not completely understood. Spin-split bands and a resulting indirect band gap have been proposed by theory. Using near band-gap left-handed and right-handed circularly polarized light we induce photocurrents of opposite directions in a single-crystal (CH$_3$NH$_3$)PbI$_3$ device at low temperature ($4~mathrm{K}$). The phenomenom is known as the circular photogalvanic effect and gives direct evidence for phototransport in spin-split bands. Simultaneous photoluminecence measurements show that the onset of the photocurrent is below the optical band gap. The results prove that an indirect band gap exists in (CH$_3$NH$_3$)PbI$_3$ with broken inversion symmetry as a result of spin-splittings in the band structure. This information is essential for understanding the photophysical properties of organic-inorganic perovskites and finding lead-free alternatives. Furthermore, the optically driven spin currents in (CH$_3$NH$_3$)PbI$_3$ make it a candidate material for spintronics applications.
We study the circular photogalvanic effect in the organometal halide perovskite solar cell absorber CH$_3$NH$_3$PbI$_3$. For crystal structures which lack inversion symmetry, the calculated photocurrent density is about $10^{-9}$ A/W, comparable to t
Hybrid halide perovskites exhibit nearly 20% power conversion efficiency, but the origin of their high efficiency is still unknown. Here, we compute the shift current, a dominant mechanism of bulk photovoltaic (PV) effect for ferroelectric photovolta
Instability of perovskite photovoltaics is still a topic which is currently under intense debate, especially the role of water environment. Unraveling the mechanism of this instability is urgent to enable practical application of perovskite solar cel
The instability of organometal halide perovskites when in contact with water is a serious challenge to their feasibility as solar cell materials. Although studies of moisture exposure have been conducted, an atomistic understanding of the degradation
We perform a thorough structural search with the minima hopping method (MHM) to explore low-energy structures of methylammonium lead iodide. By combining the MHM with a forcefield, we efficiently screen vast portions of the configurational space with