ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring Light Pollution with Fisheye Lens Imagery from A Moving Boat, A Proof of Concept

52   0   0.0 ( 0 )
 نشر من قبل Andreas Jechow
 تاريخ النشر 2017
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Near all-sky imaging photometry was performed from a boat on the Gulf of Aqaba to measure the night sky brightness in a coastal environment. The boat was not anchored, and therefore drifted and rocked. The camera was mounted on a tripod without any inertia/motion stabilization. A commercial digital single lens reflex (DSLR) camera and fisheye lens were used with ISO setting of 6400, with the exposure time varied between 0.5 s and 5 s. We find that despite movement of the vessel the measurements produce quantitatively comparable results apart from saturation effects. We discuss the potential and limitations of this method for mapping light pollution in marine and freshwater systems. This work represents the proof of concept that all-sky photometry with a commercial DSLR camera is a viable tool to determine light pollution in an ecological context from a moving boat.

قيم البحث

اقرأ أيضاً

We consider the problem of inferring the probability distribution of flux configurations in metabolic network models from empirical flux data. For the simple case in which experimental averages are to be retrieved, data are described by a Boltzmann-l ike distribution ($propto e^{F/T}$) where $F$ is a linear combination of fluxes and the `temperature parameter $Tgeq 0$ allows for fluctuations. The zero-temperature limit corresponds to a Flux Balance Analysis scenario, where an objective function ($F$) is maximized. As a test, we have inverse modeled, by means of Boltzmann learning, the catabolic core of Escherichia coli in glucose-limited aerobic stationary growth conditions. Empirical means are best reproduced when $F$ is a simple combination of biomass production and glucose uptake and the temperature is finite, implying the presence of fluctuations. The scheme presented here has the potential to deliver new quantitative insight on cellular metabolism. Our implementation is however computationally intensive, and highlights the major role that effective algorithms to sample the high-dimensional solution space of metabolic networks can play in this field.
Spain appears in light pollution maps as a country less polluted than their neighbours in the European Union. This seems to be an illusion due to its low population density. The data indicate that Spain is one of the most contaminated countries. To r each these conclusions we compare the Spanish case to those of other European countries.
Artificial skyglow is dynamic due to changing atmospheric conditions and the switching on and off of artificial lights throughout the night. Street lights as well as the ornamental illumination of historical sites and buildings are sometimes switched off at a certain time to save energy. Ornamental lights in particular are often directed upwards, and can therefore have a major contribution towards brightening of the night sky. Here we use differential photometry to investigate the change in night sky brightness and illuminance during an automated regular switch-off of ornamental light in the town of Balaguer and an organized switch-off of all public lights in the village of `Ager, both near Montsec Astronomical Park in Spain. The sites were observed during two nights with clear and cloudy conditions using a DSLR camera and a fisheye lens. A time series of images makes it possible to track changes in lighting conditions and sky brightness simultaneously. During the clear night, the ornamental lights in Balaguer contribute over 20% of the skyglow at zenith at the observational site. Furthermore, we are able to track very small changes in the ground illuminance on a cloudy night near `Ager.
New science and new technology need new materials and new concepts. In this respect, biological matter can play a primary role because it is a material with interesting and innovative features which has found several applications in technology, from highly sensitive sensors for medical treatments to devices for energy harvesting. Furthermore, most of its phenomenology remains unclear thus giving new hints for speculative investigations. In this letter, we explore the possibility to use a well-known photosensitive protein, the Reaction Center of Rhodobacter Sphaeroides, to build up an electrical pH sensor, i.e., a device able to change its resistance depending on the pH of the solution in which it crystalizes. By using a microscopic model successfully tested on analogue proteins, we investigate the electrical response of the Reaction Center single protein under different conditions of applied bias, showing the feasibility of the bio-rheostat hypothesis. As a matter of facts, the calculated resistance of this protein grows of about 100% when going from a pH = 10 to a pH = 6.5. Moreover, calculations of the conductance response in a wide range of applied bias point out interesting deviations from the linear regime. All findings are in qualitative agreement with the known role of pH in biochemical activities of Reaction Center and similar proteins, therefore supporting a proof-of-concept for the development of new electron devices based on biomaterials
The new multipurpose event-generation framework SHERPA, acronym for Simulation for High-Energy Reactions of PArticles, is presented. It is entirely written in the object-oriented programming language C++. In its current form, it is able to completely simulate electron--positron and unresolved photon--photon collisions at high energies. Also, fully hadronic collisions, such as, e.g., proton--anti-proton, proton--proton, or resolved photon--photon reactions, can be described on the signal level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا