ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Fine-tuning in Composite Higgs Models

163   0   0.0 ( 0 )
 نشر من قبل Avik Banerjee
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we investigate the next-to-minimal composite Higgs model with a SO(6)/SO(5) coset, whose pNGB sector includes a Standard Model singlet in addition to the usual Higgs doublet. The fermions are embedded in the representation 6 of SO(6). We study the region of parameter space of the model where the radiatively generated potential has global minima with both the doublet and the singlet fields developing vacuum expectation values. We investigate the consequences of kinetic and mass mixing between the Higgs and the singlet scalar that arise in this framework. We demonstrate that the ensuing doublet-singlet mixing can provide a handle to accommodate heavier resonances (top-partners) for a given compositeness scale as compared to the minimal composite Higgs model, thus relaxing the tension with the direct LHC bounds. The main phenomenological consequence of this is a sizable deviation of the Higgs couplings from the Standard Model predictions. While the present experimental precision in the measurement of the Higgs couplings still allows for considerable release of this tension, future measurements of the Higgs branching ratios with increased precision would lead to stringent constraints on this setup.



قيم البحث

اقرأ أيضاً

We study Higgs couplings in the composite Higgs model based on the coset SO(5)/SO(4). We show that the couplings to gluons and photons are insensitive to the elementary-composite mixings and thus not affected by light fermionic resonances. Moreover, at leading order in the mixings the Higgs couplings to tops and gluons, when normalized to the Standard Model (SM), are equal. These properties are shown to be direct consequences of the Goldstone symmetry and of the assumption of partial compositeness. In particular, they are independent of the details of the elementary-composite couplings and, under the further assumption of CP invariance, they are also insensitive to derivative interactions of the Higgs with the composite resonances. We support our conclusions with an explicit construction where the SM fermions are embedded in the 14 dimensional representation of SO(5).
126 - Yi Chung 2021
We consider a composite Higgs model based on the $SU(6)/Sp(6)$ coset, where an $U(1)$ subgroup of $Sp(6)$ is identified as the flavor symmetry. A complex scalar field $s$, which is a pseudo-Nambu-Goldstone boson of the broken symmetry, carries a flav or charge and plays the role of a flavon field. The $U(1)_F$ flavor symmetry is then broken by a VEV of the flavon field, which leads to a small parameter and generates the mass hierarchy between the top and bottom quarks. A light flavon below the TeV scale can be naturally introduced, which provides a fully testable model for the origin of flavor hierarchy. A light flavon also leads to substantial flavor changing neutral currents, which are strongly constrained by the flavor precision tests. The direct search of additional scalar bosons can also be conducted in HL-LHC and future hadron colliders.
The recent discovery of a 125 GeV Higgs, as well as the lack of any positive findings in searches for supersymmetry, has renewed interest in both the supersymmetric Higgs sector and fine-tuning. Here, we continue our study of the phenomenological MSS M (pMSSM), discussing the light Higgs and fine-tuning within the context of two sets of previously generated pMSSM models. We find an abundance of models with experimentally-favored Higgs masses and couplings. We investigate the decay modes of the light Higgs in these models, finding strong correlations between many final states. We then examine the degree of fine-tuning, considering contributions from each of the pMSSM parameters at up to next-to-leading-log order. In particular, we examine the fine-tuning implications for our model sets that arise from the discovery of a 125 GeV Higgs. Finally, we investigate a small subset of models with low fine-tuning and a light Higgs near 125 GeV, describing the common features of such models. We generically find a light stop and bottom with complex decay patterns into a set of light electroweak gauginos, which will make their discovery more challenging and may require novel search techniques.
Mass-split composite Higgs models naturally accommodate the experimental observation of a light 125 GeV Higgs boson and predict a large scale separation to other heavier resonances. We explore the SU(3) gauge system with four light (massless) and six heavy (massive) flavors by performing numerical simulations. Since the underlying system with degenerate and massless ten flavors appears to be infrared conformal, this system inherits conformal hyperscaling and allows to study near-conformal dynamics. Carrying out nonperturbative lattice field theory simulations, we present the low-lying particle spectrum. We demonstrate hyperscaling, predict the anomalous mass dimension of the corresponding conformal fixed point, and show that in the investigated mass regime the data are described by dilaton chiral perturbation theory. The proximity of a conformal infrared fixed point leads to a highly predictive particle spectrum which is quite distinct from QCD. Further we present initial results of our finite temperature investigations.
Fermionic third generation top partners are generic in composite Higgs models. They are likely to decay into third generation quarks and electroweak bosons. We propose a novel cut-and-count-style analysis in which we cross correlate the model-depende nt single and model-independent pair production processes for the top partners $X_{5/3}$ and $B$. In the class of composite Higgs models we study, $X_{5/3}$ is very special as it is the lightest exotic fermion. A constraint on the mass of $X_{5/3}$ directly extends to constrains on all top partner masses. By combining jet substructure methods with conventional reconstruction techniques we show that in this kind of final state a smooth interpolation between the boosted and unboosted regime is possible. We find that a reinterpretation of existing searches can improve bounds on the parameter space of composite Higgs models. Further, at 8 TeV a combined search for $X_{5/3}$ and $B$ in the $l+rm{jets}$ final state can be more sensitive than a search involving same-sign dileptons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا