ﻻ يوجد ملخص باللغة العربية
A tunable, all-optical, coupling method has been realized for a high-textit{Q} silica microsphere and an optical waveguide. By means of a novel optical nanopositioning method, induced thermal expansion of an asymmetric microsphere stem for laser powers up to 171~mW has been observed and used to fine tune the microsphere-waveguide coupling. Microcavity displacements ranging from (0.612~$pm$~0.13) -- (1.5 $pm$ 0.13) $mu$m and nanometer scale sensitivities varying from (2.81 $pm$ 0.08) -- (7.39 $pm$ 0.17) nm/mW, with an apparent linear dependency of coupling distance on stem laser heating, were obtained. Using this method, the coupling was altered such that different coupling regimes could be explored for particular samples. This tunable coupling method, in principle, could be incorporated into lab-on-a-chip microresonator systems, photonic molecule systems, and other nanopositioning frameworks.
Quantitative measurements of the vibrational eigenmodes in ultra-high-Q silica microspheres are reported. The modes are efficiently excited via radiation-pressure induced dynamical back-action of light confined in the optical whispering-gallery modes
We demonstrated the tuning of whispering gallery modes (WGMs) of a silica microsphere during optical levitation through the annealing process. We determined the annealing temperature from the power balance between the CO2 laser light heating and seve
We report on the experimental observation of coherent cavity soliton frequency combs in silica microspheres. Specifically, we demonstrate that careful alignment of the microsphere relative to the coupling fiber taper allows for the suppression of hig
Normal mode splitting is observed in a cavity QED system, in which nitrogen vacancy centers in diamond nanocrystals are coupled to whispering gallery modes in a silica microsphere. The composite nanocrystal-microsphere system takes advantage of the e
An effective harmonic potential for photons is achieved in a photonic crystal structure, owing to the balance of the background dispersion and a bichromatic potential. Consequently, ultra-compact resonators with several equi-spaced resonances and hig