ترغب بنشر مسار تعليمي؟ اضغط هنا

A finite simple group is CCA if and only if it has no element of order four

90   0   0.0 ( 0 )
 نشر من قبل Luke Morgan
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A Cayley graph for a group $G$ is CCA if every automorphism of the graph that preserves the edge-orbits under the regular representation of $G$ is an element of the normaliser of $G$. A group $G$ is then said to be CCA if every connected Cayley graph on $G$ is CCA. We show that a finite simple group is CCA if and only if it has no element of order 4. We also show that many 2-groups are non-CCA.



قيم البحث

اقرأ أيضاً

A subset $A$ of a semigroup $S$ is called a $chain$ ($antichain$) if $xyin{x,y}$ ($xy otin{x,y}$) for any (distinct) elements $x,yin S$. A semigroup $S$ is called ($anti$)$chain$-$finite$ if $S$ contains no infinite (anti)chains. We prove that each a ntichain-finite semigroup $S$ is periodic and for every idempotent $e$ of $S$ the set $sqrt[infty]{e}={xin S:exists ninmathbb N;;(x^n=e)}$ is finite. This property of antichain-finite semigroups is used to prove that a semigroup is finite if and only if it is chain-finite and antichain-finite. Also we present an example of an antichain-finite semilattice that is not a union of finitely many chains.
279 - John Abbott , Bettina Eick 2015
Let $n$ be a positive integer and let $f_1, ldots, f_r$ be polynomials in $n^2$ indeterminates over an algebraically closed field $K$. We describe an algorithm to decide if the invertible matrices contained in the variety of $f_1, ldots, f_r$ form a subgroup of $GL(n,K)$; that is, we show how to decide if the polynomials $f_1, ldots, f_r$ define a linear algebraic group.
Assuming that the Permanent polynomial requires algebraic circuits of exponential size, we show that the class VNP does not have efficiently computable equations. In other words, any nonzero polynomial that vanishes on the coefficient vectors of all polynomials in the class VNP requires algebraic circuits of super-polynomial size. In a recent work of Chatterjee and the authors (FOCS 2020), it was shown that the subclasses of VP and VNP consisting of polynomials with bounded integer coefficients do have equations with small algebraic circuits. Their work left open the possibility that these results could perhaps be extended to all of VP or VNP. The results in this paper show that assuming the hardness of Permanent, at least for VNP, allowing polynomials with large coefficients does indeed incur a significant blow up in the circuit complexity of equations.
Many modern data-intensive computational problems either require, or benefit from distance or similarity data that adhere to a metric. The algorithms run faster or have better performance guarantees. Unfortunately, in real applications, the data are messy and values are noisy. The distances between the data points are far from satisfying a metric. Indeed, there are a number of different algorithms for finding the closest set of distances to the given ones that also satisfy a metric (sometimes with the extra condition of being Euclidean). These algorithms can have unintended consequences, they can change a large number of the original data points, and alter many other features of the data. The goal of sparse metric repair is to make as few changes as possible to the original data set or underlying distances so as to ensure the resulting distances satisfy the properties of a metric. In other words, we seek to minimize the sparsity (or the $ell_0$ norm) of the changes we make to the distances subject to the new distances satisfying a metric. We give three different combinatorial algorithms to repair a metric sparsely. In one setting the algorithm is guaranteed to return the sparsest solution and in the other settings, the algorithms repair the metric. Without prior information, the algorithms run in time proportional to the cube of the number of input data points and, with prior information we can reduce the running time considerably.
245 - Jing Jian Li , Zai Ping Lu 2021
A graph $Ga=(V,E)$ is called a Cayley graph of some group $T$ if the automorphism group $Aut(Ga)$ contains a subgroup $T$ which acts on regularly on $V$. If the subgroup $T$ is normal in $Aut(Ga)$ then $Ga$ is called a normal Cayley graph of $T$. Let $r$ be an odd prime. Fang et al. cite{FMW} proved that, with a finite number of exceptions for finite simple group $T$, every connected symmetric Cayley graph of $T$ of valency $r$ is normal. In this paper, employing maximal factorizations of finite almost simple groups, we work out a possible list of those exceptions for $T$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا