ﻻ يوجد ملخص باللغة العربية
The KATRIN experiment aims to determine the absolute neutrino mass by measuring the endpoint region of the tritium $beta$ spectrum. As a large-scale experiment with a sharp energy resolution, high source luminosity and low background it may also be capable of testing certain theories of neutrino interactions beyond the standard model (SM). An example of a non-SM interaction are right-handed currents mediated by right-handed W bosons in the left-right symmetric model (LRSM). In this extension of the SM, an additional SU(2)$_mathrm R$ symmetry in the high-energy limit is introduced, which naturally includes sterile neutrinos and predicts the seesaw mechanism. In tritium $beta$ decay, this leads to an additional term from interference between left- and right-handed interactions, which enhances or suppresses certain regions near the endpoint of the beta spectrum. In this work, the sensitivity of KATRIN to right-handed currents is estimated for the scenario of a light sterile neutrino with a mass of some eV. This has been performed with a Bayesian analysis using Markov Chain Monte Carlo (MCMC). The simulations show that in principle KATRIN is able to set sterile neutrino mass-dependent limits on the interference strength. Thereby, the sensitivity is significantly increased if the $Q$ value of the $beta$ decay can be sufficiently constrained. However, the sensitivity is not high enough to improve current upper limits from right-handed W boson searches at the LHC.
The muon-to-electron conversion in nuclei like aluminum, titanium and gold is studied in the context of a class of mirror fermion model with non-sterile right-handed neutrinos having mass at the electroweak scale. At the limit of zero momentum transf
The electric dipole moment of the electron is studied in detail in an extended mirror fermion model with the following unique features of (a) right-handed neutrinos are non-sterile and have masses at the electroweak scale, and (b) a horizontal symmet
Several models of neutrino masses predict the existence of neutral heavy leptons. Here, we review current constraints on heavy neutrinos and apply a new formalism separating new physics from Standard Model. We discuss also the indirect effect of extra heavy neutrinos in oscillation experiments.
Recent lattice determinations of direct CP violation in kaon decays, parametrized by $epsilon$, suggest a discrepancy of several sigma between experiment and the standard model. Assuming that this situation is due to new physics, we investigate a sol
We study the equilibration of the right-helicity states of light Dirac neutrinos in the early universe by solving the momentum dependent Boltzmann equations numerically. We show that the main effect is due to electroweak gauge boson poles, which enha