ترغب بنشر مسار تعليمي؟ اضغط هنا

OGLE-2013-BLG-1761Lb: A Massive Planet Around an M/K Dwarf

89   0   0.0 ( 0 )
 نشر من قبل Yuki Hirao
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery and the analysis of the planetary microlensing event, OGLE-2013-BLG-1761. There are some degenerate solutions in this event because the planetary anomaly is only sparsely sampled. But the detailed light curve analysis ruled out all stellar binary models and shows that the lens to be a planetary system. There is the so-called close/wide degeneracy in the solutions with the planet/host mass ratio of $q sim (7.5 pm 1.5) times 10^{-3}$ and $q sim (9.3 pm 2.9) times 10^{-3}$ with the projected separation in Einstein radius units of $s = 0.95$ (close) and $s = 1.19$ (wide), respectively. The microlens parallax effect is not detected but the finite source effect is detected. Our Bayesian analysis indicates that the lens system is located at $D_{rm L}=6.9_{-1.2}^{+1.0} {rm kpc}$ away from us and the host star is an M/K-dwarf with the mass of $M_{rm L}=0.33_{-0.18}^{+0.32} M_{odot}$ orbited by a super-Jupiter mass planet with the mass of $m_{rm P}=2.8_{-1.5}^{+2.5} M_{rm Jup}$ at the projected separation of $a_{perp}=1.8_{-0.5}^{+0.5} {rm AU}$. The preference of the large lens distance in the Bayesian analysis is due to the relatively large observed source star radius. The distance and other physical parameters can be constrained by the future high resolution imaging by ground large telescopes or HST. If the estimated lens distance is correct, this planet provides another sample for testing the claimed deficit of planets in the Galactic bulge.



قيم البحث

اقرأ أيضاً

We present the analysis of the binary-lens microlensing event OGLE-2013-BLG-0911. The best-fit solutions indicate the binary mass ratio of q~0.03 which differs from that reported in Shvartzvald+2016. The event suffers from the well-known close/wide d egeneracy, resulting in two groups of solutions for the projected separation normalized by the Einstein radius of s~0.15 or s~7. The finite source and the parallax observations allow us to measure the lens physical parameters. The lens system is an M-dwarf orbited by a massive Jupiter companion at very close (M_{host}=0.30^{+0.08}_{-0.06} M_{Sun}, M_{comp}=10.1^{+2.9}_{-2.2} M_{Jup}, a_{exp}=0.40^{+0.05}_{-0.04} au) or wide (M_{host}=0.28^{+0.10}_{-0.08} M_{Sun}, M_{comp}=9.9^{+3.8}_{-3.5}M_{Jup}, a_{exp}=18.0^{+3.2}_{-3.2} au) separation. Although the mass ratio is slightly above the planet-brown dwarf (BD) mass-ratio boundary of q=0.03 which is generally used, the median physical mass of the companion is slightly below the planet-BD mass boundary of 13M_{Jup}. It is likely that the formation mechanisms for BDs and planets are different and the objects near the boundaries could have been formed by either mechanism. It is important to probe the distribution of such companions with masses of ~13M_{Jup} in order to statistically constrain the formation theories for both BDs and massive planets. In particular, the microlensing method is able to probe the distribution around low-mass M-dwarfs and even BDs which is challenging for other exoplanet detection methods.
82 - Y. Hirao , A. Udalski , T. Sumi 2016
We report the discovery of a planet by the microlensing method, OGLE-2012-BLG-0724Lb. Although the duration of the planetary signal for this event was one of the shortest seen for a planetary event, the anomaly was well covered thanks to high cadence observations taken by the survey groups OGLE and MOA. By analyzing the light curve, this planetary system is found to have a mass ratio $q=(1.58pm0.15)times10^{-3}$. By conducting a Bayesian analysis, we estimate that the host star is an M-dwarf star with a mass of $M_{rm L}=0.29_{-0.16}^{+0.33} M_{odot}$ located at $D_{rm L}=6.7_{-1.2}^{+1.1} {rm kpc}$ away from the Earth and the companions mass is $m_{rm P}=0.47_{-0.26}^{+0.54} M_{rm Jup}$. The projected planet-host separation is $a_{perp}=1.6_{-0.3}^{+0.4} {rm AU}$. Because the lens-source relative proper motion is relatively high, future high resolution images would detect the lens host star and determine the lens properties uniquely. This system is likely a Saturn-mass exoplanet around an M-dwarf and such systems are commonly detected by gravitational microlensing. This adds an another example of a possible pileup of sub-Jupiters $(0.2 < m_{rm P}/M_{rm Jup} < 1)$ in contrast to a lack of Jupiters ($sim 1 - 2 M_{rm Jup}$) around M-dwarfs, supporting the prediction by core accretion models that Jupiter-mass or more massive planets are unlikely to form around M-dwarfs.
We present the discovery of two planetary systems consisting of a Saturn-mass planet orbiting an M-dwarf, which were detected in faint microlensing events OGLE-2013-BLG-0132 and OGLE-2013-BLG-1721. The planetary anomalies were covered with high caden ce by OGLE and MOA photometric surveys. The light curve modeling indicates that the planet-to-host mass ratios are $(5.15 pm 0.28)times 10^{-4}$ and $(13.18 pm 0.72)times 10^{-4}$, respectively. Both events were too short and too faint to measure a reliable parallax signal and hence the lens mass. We therefore used a Bayesian analysis to estimate the masses of both planets: $0.29^{+0.16}_{-0.13} M_{Jup}$ (OGLE-2013-BLG-0132Lb) and $0.64^{+0.35}_{-0.31} M_{Jup}$ (OGLE-2013-BLG-1721Lb). Thanks to a high relative proper motion, OGLE-2013-BLG-0132 is a promising candidate for the high-resolution imaging follow-up. Both planets belong to an increasing sample of sub-Jupiter-mass planets orbiting M-dwarfs beyond the snow line.
We report the discovery of a $Spitzer$ microlensing planet OGLE-2018-BLG-0596Lb, with preferred planet-host mass ratio $q sim 2times10^{-4}$. The planetary signal, which is characterized by a short $(sim 1~{rm day})$ bump on the rising side of the le nsing light curve, was densely covered by ground-based surveys. We find that the signal can be explained by a bright source that fully envelops the planetary caustic, i.e., a Hollywood geometry. Combined with the source proper motion measured from $Gaia$, the $Spitzer$ satellite parallax measurement makes it possible to precisely constrain the lens physical parameters. The preferred solution, in which the planet perturbs the minor image due to lensing by the host, yields a Uranus-mass planet with a mass of $M_{rm p} = 13.9pm1.6~M_{oplus}$ orbiting a mid M-dwarf with a mass of $M_{rm h} = 0.23pm0.03~M_{odot}$. There is also a second possible solution that is substantially disfavored but cannot be ruled out, for which the planet perturbs the major image. The latter solution yields $M_{rm p} = 1.2pm0.2~M_{oplus}$ and $M_{rm h} = 0.15pm0.02~M_{odot}$. By combining the microlensing and $Gaia$ data together with a Galactic model, we find in either case that the lens lies on the near side of the Galactic bulge at a distance $D_{rm L} sim 6pm1~{rm kpc}$. Future adaptive optics observations may decisively resolve the major image/minor image degeneracy.
We report the discovery of a Jupiter-mass planet orbiting an M-dwarf star that gave rise to the microlensing event OGLE-2011-BLG-0265. Such a system is very rare among known planetary systems and thus the discovery is important for theoretical studie s of planetary formation and evolution. High-cadence temporal coverage of the planetary signal combined with extended observations throughout the event allows us to accurately model the observed light curve. The final microlensing solution remains, however, degenerate yielding two possible configurations of the planet and the host star. In the case of the preferred solution, the mass of the planet is $M_{rm p} = 0.9pm 0.3 M_{rm J}$, and the planet is orbiting a star with a mass $M = 0.22pm 0.06 M_odot$. The second possible configuration (2$sigma$ away) consists of a planet with $M_{rm p}=0.6pm 0.3 M_{rm J}$ and host star with $M=0.14pm 0.06 M_odot$. The system is located in the Galactic disk 3 -- 4 kpc towards the Galactic bulge. In both cases, with an orbit size of 1.5 -- 2.0 AU, the planet is a cold Jupiter -- located well beyond the snow line of the host star. Currently available data make the secure selection of the correct solution difficult, but there are prospects for lifting the degeneracy with additional follow-up observations in the future, when the lens and source star separate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا