ﻻ يوجد ملخص باللغة العربية
We report the discovery and the analysis of the planetary microlensing event, OGLE-2013-BLG-1761. There are some degenerate solutions in this event because the planetary anomaly is only sparsely sampled. But the detailed light curve analysis ruled out all stellar binary models and shows that the lens to be a planetary system. There is the so-called close/wide degeneracy in the solutions with the planet/host mass ratio of $q sim (7.5 pm 1.5) times 10^{-3}$ and $q sim (9.3 pm 2.9) times 10^{-3}$ with the projected separation in Einstein radius units of $s = 0.95$ (close) and $s = 1.19$ (wide), respectively. The microlens parallax effect is not detected but the finite source effect is detected. Our Bayesian analysis indicates that the lens system is located at $D_{rm L}=6.9_{-1.2}^{+1.0} {rm kpc}$ away from us and the host star is an M/K-dwarf with the mass of $M_{rm L}=0.33_{-0.18}^{+0.32} M_{odot}$ orbited by a super-Jupiter mass planet with the mass of $m_{rm P}=2.8_{-1.5}^{+2.5} M_{rm Jup}$ at the projected separation of $a_{perp}=1.8_{-0.5}^{+0.5} {rm AU}$. The preference of the large lens distance in the Bayesian analysis is due to the relatively large observed source star radius. The distance and other physical parameters can be constrained by the future high resolution imaging by ground large telescopes or HST. If the estimated lens distance is correct, this planet provides another sample for testing the claimed deficit of planets in the Galactic bulge.
We present the analysis of the binary-lens microlensing event OGLE-2013-BLG-0911. The best-fit solutions indicate the binary mass ratio of q~0.03 which differs from that reported in Shvartzvald+2016. The event suffers from the well-known close/wide d
We report the discovery of a planet by the microlensing method, OGLE-2012-BLG-0724Lb. Although the duration of the planetary signal for this event was one of the shortest seen for a planetary event, the anomaly was well covered thanks to high cadence
We present the discovery of two planetary systems consisting of a Saturn-mass planet orbiting an M-dwarf, which were detected in faint microlensing events OGLE-2013-BLG-0132 and OGLE-2013-BLG-1721. The planetary anomalies were covered with high caden
We report the discovery of a $Spitzer$ microlensing planet OGLE-2018-BLG-0596Lb, with preferred planet-host mass ratio $q sim 2times10^{-4}$. The planetary signal, which is characterized by a short $(sim 1~{rm day})$ bump on the rising side of the le
We report the discovery of a Jupiter-mass planet orbiting an M-dwarf star that gave rise to the microlensing event OGLE-2011-BLG-0265. Such a system is very rare among known planetary systems and thus the discovery is important for theoretical studie