ترغب بنشر مسار تعليمي؟ اضغط هنا

Attractors of Cartan foliations

60   0   0.0 ( 0 )
 نشر من قبل Anton S. Galaev Dr.
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The paper is focused on the existence problem of attractors for foliations. Since the existence of an attractor is a transversal property of the foliation, it is natural to consider foliations admitting transversal geometric structures. As transversal structures are chosen Cartan geometries due to their universality. The existence problem of an attractor on a complete Cartan foliation is reduced to a similar problem for the action of its structure Lie group on a certain smooth manifold. In the case of a complete Cartan foliation with a structure subordinated to a transformation group, the problem is reduced to the level of the global holonomy group of this foliation. Each countable automorphism group preserving a Cartan geometry on a manifold and admitting an attractor is realized as the global holonomy group of some Cartan foliation with an attractor. Conditions on the linear holonomy group of a leaf of a reductive Cartan foliation sufficient for the existence of an attractor (and a global attractor) which is a minimal set are found. Various examples are considered.



قيم البحث

اقرأ أيضاً

We prove a theorem that gives a sufficient condition for the full basic automorphism group of a complete Cartan foliation to admit a unique (finite-dimensional) Lie group structure in the category of Cartan foliations. Emphasize that the transverse C artan geometry may not be effective. Some estimates of the dimension of this group depending on the transverse geometry are found. Further, we investigate Cartan foliations covered by fibrations. When the global holonomy group of that foliation is discrete, we obtain the explicit new formula for determining its basic automorphism Lie group. Examples of computing the full basic automorphism group of complete Cartan foliations are constructed.
We show that a Riemannian foliation on a topological $n$-sphere has leaf dimension 1 or 3 unless n=15 and the Riemannian foliation is given by the fibers of a Riemannian submersion to an 8-dimensional sphere. This allows us to classify Riemannian foliations on round spheres up to metric congruence.
418 - K. Ichikawa , T. Noda 2005
In this paper, we study stability for harmonic foliations on locally conformal Kahler manifolds with complex leaves. We also discuss instability for harmonic foliations on compact submanifolds immersed in Euclidean spaces and compact homogeneous spaces.
We combine classic stability results for foliations with recent results on deformations of Lie groupoids and Lie algebroids to provide a cohomological characterization for rigidity of compact foliations on compact manifolds.
123 - Alexander Lytchak 2009
We prove that an isometric action of a Lie group on a Riemannian manifold admits a resolution preserving the transverse geometry if and only if the action is infinitesimally polar. We provide applications concerning topological simplicity of several classes of isometric actions, including polar and variationally complete ones. All results are proven in the more general case of singular Riemannian foliations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا