ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous Lattice Behavior of Vanadium Pentaoxide (V2O5): X- Ray Diffraction, Inelastic Neutron Scattering and ab-initio Lattice Dynamics

76   0   0.0 ( 0 )
 نشر من قبل R Mittal
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the structural and dynamical studies of layered vanadium pentaoxide (V2O5). The temperature dependent X-ray diffraction measurements reveal highly anisotropic and anomalous thermal expansion from 12 K to 853 K. The results do not show any evidence of structural phase transition or decomposition of {alpha}-V2O5, contrary to the previous transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) experiments. The inelastic neutron scattering measurements performed up to 673 K corroborate the result of our X-ray diffraction measurements. The analysis of the experimental data is carried out using ab-initio lattice dynamics calculation. The important role of van der-Waals dispersion and Hubbard interactions on the structure and dynamics is revealed through the ab-initio calculations. The calculated anisotropic thermal expansion behavior agrees well with temperature dependent X- ray diffraction. The mechanism of anisotropic thermal expansion and anisotropic linear compressibility is discussed in terms of calculated anisotropy in Gruneisen parameters and elastic coefficients. The calculated Gibbs free energy in various phases of V2O5 is used to understand the high pressure and temperature phase diagram of the compound. Softening of elastic constant (C66) with pressure suggests a possibility of shear mechanism for {alpha} to b{eta} phase transformation under pressure.

قيم البحث

اقرأ أيضاً

Single-crystal diffuse scattering data have been collected at room temperature on synthetic titanite using both neutrons and high-energy X-rays. A simple ball-and-springs model reproduces the observed diffuse scattering well, confirming its origin to be primarily due to thermal motion of the atoms. Ab initio phonons are calculated using density-functional perturbation theory and are shown to reproduce the experimental diffuse scattering. The observed X-ray and neutron scattering patterns are consistent with a summation of mode frequencies and displacement eigenvectors associated with the entire phonon spectrum, rather than with a simple, short-range static displacement. A band gap is observed between 600 and 700 cm-1 with only two modes crossing this region, both associated with antiferroelectric Ti-O motion along a. One of these modes (of Bu symmetry), displays a large LO-TO mode-splitting (562-701.4 cm-1) and has a dominant component coming from Ti-O bond stretching and, thus, the mode-splitting is related to the polarizability of the Ti-O bonds along the chain direction. Similar mode-splitting is observed in piezo- and ferroelectric materials. The calculated phonon dispersion model may be of use to others in the future to understand the phase transition at higher temperatures, as well as in the interpretation of measured phonon dispersion curves.
We report measurements of the temperature dependence of phonon densities of states in K0.8Fe1.6Se2 using inelastic neutron scattering technique. While cooling down to 150 K, a phonon peak splitting around 25 meV is observed and a new peak appears at 31 meV. The measurements support the recent Raman and infra-red measurements indicating a lowering of symmetry of K0.8Fe1.6Se2 upon cooling below 250 K. Ab-initio phonon calculations have been carried out for K0.8Fe1.6Se2 and KFe2Se2. The comparison of the phonon spectra as obtained from the magnetic as well as non magnetic calculations show pronounced differences. We show that in the two calculations the energy range of the vibrational contribution from both Fe and Se are quite different. We conclude that Fe magnetism is correlated to the phonon dynamics and it plays an important role in stabilizing the structure of K0.8Fe1.6Se2 as well as that of KFe2Se2. The calculations highlight the presence of low energy librational modes in K0.8Fe1.6Se2 as compared to KFe2Se2.
We have performed quasielastic neutron scattering (QENS) experiments up to 1243 K and ab-initio molecular dynamics (AIMD) simulations to investigate the Na diffusion in various phases of NaAlSiO4 (NASO), namely, low-carnegieite (L-NASO; trigonal), hi gh-carnegieite (H-NASO; cubic) and nepheline (N-NASO; hexagonal) phases. The QENS measurements reveal Na ions localized diffusion behavior in L-NASO and N-NASO, but long-range diffusion behavior in H-NASO. The AIMD simulation supplemented the QENS measurements and showed that excess Na ions in H-NASO enhance the host network flexibility and activate the AlO4/SiO4 tetrahedra rotational modes. These framework modes enable the long-range diffusion of Na across a pathway of interstitial sites. The simulations also show Na diffusion in Na-deficient N-NASO through vacant Na sites along the hexagonal c-axis.
We present a comprehensive ab initio study of structural, electronic, lattice dynamical and electron-phonon coupling properties of the Bi(111) surface within density functional perturbation theory. Relativistic corrections due to spin-orbit coupling are consistently taken into account. As calculations are carried out in a periodic slab geometry, special attention is given to the convergence with respect to the slab thickness. Although the electronic structure of Bi(111) thin films varies significantly with thickness, we found that the lattice dynamics of Bi(111) is quite robust and appears converged already for slabs as thin as 6 bilayers. Changes of interatomic couplings are confined mostly to the first two bilayers, resulting in super-bulk modes with frequencies higher than the optic bulk spectrum, and in an enhanced density of states at lower frequencies for atoms in the first bilayer. Electronic states of the surface band related to the outer part of the hole Fermi surfaces exhibit a moderate electron-phonon coupling of about 0.45, which is larger than the coupling constant of bulk Bi. States at the inner part of the hole surface as well as those forming the electron pocket close to the zone center show much increased couplings due to transitions into bulk projected states near Gamma_bar. For these cases, the state dependent Eliashberg functions exhibit pronounced peaks at low energy and strongly deviate in shape from a Debye-like spectrum, indicating that an extraction of the coupling strength from measured electronic self-energies based on this simple model is likely to fail.
We have performed quasielastic and inelastic neutron scattering (QENS and INS) measurements from 300 K to 1173 K to investigate the Na-diffusion and underlying host dynamics in Na2Ti3O7. The QENS data show that the Na atoms undergo localized jumps up to 1173 K. The ab-initio molecular dynamics (AIMD) simulations supplement the measurements and show 1-d long-ranged diffusion along the a-axis above 1500 K. The simulations indicate that the occupancy of the interstitial site is critical for long-range diffusion. The nudged-elastic-band (NEB) calculation confirmed that the activation energy barrier is lowest for diffusion along the a-axis. In the experimental phonon spectra the peaks at 10 and 14 meV are dominated by Na dynamics that disappear on warming, suggesting low-energy phonons significantly contribute to large Na vibrational amplitude at elevated temperatures that enhances the Na hopping probability. We have also calculated the mode Gruneisen parameters of the phonons and thereby calculated the volume thermal expansion coefficient, which is found to be in excellent agreement with available experimental data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا