ترغب بنشر مسار تعليمي؟ اضغط هنا

Status of the laboratory infrastructure for detector calibration and characterization at the European XFEL

133   0   0.0 ( 0 )
 نشر من قبل Natascha Raab
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The European X-ray Free Electron Laser (XFEL.EU) will provide unprecedented peak brilliance and ultra-short and spatially coherent X-ray pulses in an energy range of 0.25 to 25 keV . The pulse timing structure is unique with a burst of 2700 pulses of 100 fs length at a temporal distance of 220 ns followed by a 99.4 ms gap. To make optimal use of this timing structure and energy range a great variety of detectors are being developed for use at XFEL.EU, including 2D X-ray imaging cameras that are able to detect images at a rate of 4.5 MHz, provide dynamic ranges up to 10$^5$ photons per pulse per pixel under different operating conditions and covering a large range of angular resolution. In order to characterize, commission and calibrate this variety of detectors and for testing of detector prototypes the XFEL.EU detector group is building up an X-ray test laboratory that allows testing of detectors with X-ray photons under conditions that are as similar to the future beam line conditions at the XFEL.EU as is possible with laboratory sources. A total of four test environments provide the infrastructure for detector tests and calibration: two portable setups that utilize low power X-ray sources and radioactive isotopes, a test environment where a commercial high power X-ray generator is in use, and a pulsed X-ray/electron source which will provide pulses as short as 25 ns in XFEL.EU burst mode combined with target anodes of different materials. The status of the test environments, three of which are already in use while one is in commissioning phase, will be presented as well as first results from performance tests and characterization of the sources.



قيم البحث

اقرأ أيضاً

The European X-ray Free Electron Laser (XFEL.EU) will provide as-yet-unrivaled peak brilliance and ultra-short pulses of spatially coherent X-rays with a pulse length of less than 100 fs in the energy range between 0.25 and 25 keV. The high radiation intensity and ultra-short pulse duration will open a window for novel scientific techniques and will allow to explore new phenomena in biology, chemistry, material science, as well as matter at high energy density, atomic, ion and molecular physics. The variety of scientific applications and especially the unique XFEL.EU time structure require adequate instrumentation to be developed in order to exploit the full potential of the light source. To make optimal use of the unprecedented capabilities of the European XFEL and master these vast technological challenges, the European XFEL GmbH has started a detector R&D program. The technology concepts of the detector system presently under development are complementary in their performance and will cover the requirements of a large fraction of the scientific applications envisaged for the XFEL.EU facility. The actual status of the detector development projects which includes ultra-fast 2D imaging detectors, low repetition rate 2D detectors as well as strip detectors for e.g. spectroscopy applications and the infrastructure for the detectors calibration and tests will be presented. Furthermore, an overview of the forthcoming implementation phase of the European XFEL in terms of detector R&D will be given.
The Adaptive Gain Integrating Pixel Detector (AGIPD) is an x-ray imager, custom designed for the European x-ray Free-Electron Laser (XFEL). It is a fast, low noise integrating detector, with an adaptive gain amplifier per pixel. This has an equivalen t noise of less than 1 keV when detecting single photons and, when switched into another gain state, a dynamic range of more than 10$^4$ photons of 12 keV. In burst mode the system is able to store 352 images while running at up to 6.5 MHz, which is compatible with the 4.5 MHz frame rate at the European XFEL. The AGIPD system was installed and commissioned in August 2017, and successfully used for the first experiments at the Single Particles, Clusters and Biomolecules (SPB) experimental station at the European XFEL since September 2017. This paper describes the principal components and performance parameters of the system.
The European X-ray Free Electron Laser (EuXFEL) is a research facility providing spatially coherent X-ray flashes in the energy range from 0.25keV to 25keV of unprecedented brilliance and with unique time structure: X-ray pulses with a 4.5 MHz repeti tion rate arranged in trains with 2700 pulses every 100 ms. The facility operates three photon beamlines called SASE 1, SASE 2 and SASE 3. Each of the beamlines is hosting two scientific experiments. The SASE 1 beamline started its user operation in September 2017, followed by successful first lasing at the SASE 2 beamline in May 2018. Early user experiments are planned to start in 2019 at this beamline, while early user experiments for the SASE 3 beamline are scheduled for the end of 2018. The quality of the experimental data will gain substantial benefits from an accurate characterization and calibration of the X-ray detectors. Supplementing high repetition rate detectors at MHz speeds, slower detectors such as the ePix100a and the FastCCD will be operated at the train repetition rate of 10 Hz. These 2D silicon pixelized detectors use fast parallel column-wise readout implemented as a CCD or as a hybrid pixel detector. In the following, characterization and analysis approaches for the FastCCD and the ePix100a detectors are discussed and the performance of the detectors is evaluated using appropriate state-of-the-art analysis techniques.
The emergence of high repetition-rate X-ray free-electron lasers (XFELs) powered by superconducting accelerator technology enables the measurement of significantly more experimental data per day than was previously possible. The European XFEL will so on provide 27,000 pulses per second, more than two orders of magnitude more than any other XFEL. The increased pulse rate is a key enabling factor for single-particle X-ray diffractive imaging, which relies on averaging the weak diffraction signal from single biological particles. Taking full advantage of this new capability requires that all experimental steps, from sample preparation and delivery to the acquisition of diffraction patterns, are compatible with the increased pulse repetition rate. Here, we show that single-particle imaging can be performed using X-ray pulses at megahertz repetition rates. The obtained results pave the way towards exploiting high repetition-rate X-ray free-electron lasers for single-particle imaging at their full repetition rate.
161 - Markus Kuster 2020
The X-ray free-electron lasers that became available during the last decade, like the European XFEL (EuXFEL), place high demands on their instrumentation. Especially at low photon energies below $1,text{keV}$, detectors with high sensitivity, and con sequently low noise and high quantum efficiency, are required to enable facility users to fully exploit the scientific potential of the photon source. A 1-Megapixel pnCCD detector with a $1024times 1024$ pixel format has been installed and commissioned for imaging applications at the Nano-Sized Quantum System (NQS) station of the Small Quantum System (SQS) instrument at EuXFEL. The instrument is currently operating in the energy range between $0.5$ and $3,text{keV}$ and the NQS station is designed for investigations of the interaction of intense FEL pulses with clusters, nano-particles and small bio-molecules, by combining photo-ion and photo-electron spectroscopy with coherent diffraction imaging techniques. The core of the imaging detector is a pn-type charge coupled device (pnCCD) with a pixel pitch of $75,mutext{m}times 75,mutext{m}$. Depending on the experimental scenario, the pnCCD enables imaging of single photons thanks to its very low electronic noise of $3$e$^-$ and high quantum efficiency. Here we present an overview on the EuXFEL pnCCD detector and the results from the commissioning and first user operation at the SQS experiment in June 2019. The detailed descriptions of the detector design and capabilities, its implementation at EuXFEL both mechanically and from the controls side as well as important data correction steps aim to provide useful background for users planning and analyzing experiments at EuXFEL and may serve as a benchmark for comparing and planning future endstations at other FELs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا