ﻻ يوجد ملخص باللغة العربية
The problems of computational data processing involving regression, interpolation, reconstruction and imputation for multidimensional big datasets are becoming more important these days, because of the availability of data and their widely spread usage in business, technological, scientific and other applications. The existing methods often have limitations, which either do not allow, or make it difficult to accomplish many data processing tasks. The problems usually relate to algorithm accuracy, applicability, performance (computational and algorithmic), demands for computational resources, both in terms of power and memory, and difficulty working with high dimensions. Here, we propose a new concept and introduce two methods, which use local area predictors (input data) for finding outcomes. One method uses the gradient based approach, while the second one employs an introduced family of smooth approximating functions. The new methods are free from many drawbacks of existing approaches. They are practical, have very wide range of applicability, provide high accuracy, excellent computational performance, fit for parallel computing, and very well suited for processing high dimension big data. The methods also provide multidimensional outcome, when needed. We present numerical examples of up to one hundred dimensions, and report in detail performance characteristics and various properties of new methods.
Correlated data are ubiquitous in todays data-driven society. A fundamental task in analyzing these data is to understand, characterize and utilize the correlations in them in order to conduct valid inference. Yet explicit regression analysis of corr
This paper investigates the problem of making inference about a parametric model for the regression of an outcome variable $Y$ on covariates $(V,L)$ when data are fused from two separate sources, one which contains information only on $(V, Y)$ while
This paper develops an incremental learning algorithm based on quadratic inference function (QIF) to analyze streaming datasets with correlated outcomes such as longitudinal data and clustered data. We propose a renewable QIF (RenewQIF) method within
Regression problems that have closed-form solutions are well understood and can be easily implemented when the dataset is small enough to be all loaded into the RAM. Challenges arise when data is too big to be stored in RAM to compute the closed form
Research on Poisson regression analysis for dependent data has been developed rapidly in the last decade. One of difficult problems in a multivariate case is how to construct a cross-correlation structure and at the meantime make sure that the covari