ترغب بنشر مسار تعليمي؟ اضغط هنا

Daily monitoring of TeV gamma-ray emission from Mrk 421, Mrk 501, and the Crab Nebula with HAWC

250   0   0.0 ( 0 )
 نشر من قبل Robert Lauer
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from daily monitoring of gamma rays in the energy range $sim0.5$ to $sim100$ TeV with the first 17 months of data from the High Altitude Water Cherenkov (HAWC) Observatory. Its wide field of view of 2 steradians and duty cycle of $>95$% are unique features compared to other TeV observatories that allow us to observe every source that transits over HAWC for up to $sim6$ hours each sidereal day. This regular sampling yields unprecedented light curves from unbiased measurements that are independent of seasons or weather conditions. For the Crab Nebula as a reference source we find no variability in the TeV band. Our main focus is the study of the TeV blazars Markarian (Mrk) 421 and Mrk 501. A spectral fit for Mrk 421 yields a power law index $Gamma=2.21 pm0.14_{mathrm{stat}}pm0.20_{mathrm{sys}}$ and an exponential cut-off $E_0=5.4 pm 1.1_{mathrm{stat}}pm 1.0_{mathrm{sys}}$ TeV. For Mrk 501, we find an index $Gamma=1.60pm 0.30_{mathrm{stat}} pm 0.20_{mathrm{sys}}$ and exponential cut-off $E_0=5.7pm 1.6_{mathrm{stat}} pm 1.0_{mathrm{sys}}$ TeV. The light curves for both sources show clear variability and a Bayesian analysis is applied to identify changes between flux states. The highest per-transit fluxes observed from Mrk 421 exceed the Crab Nebula flux by a factor of approximately five. For Mrk 501, several transits show fluxes in excess of three times the Crab Nebula flux. In a comparison to lower energy gamma-ray and X-ray monitoring data with comparable sampling we cannot identify clear counterparts for the most significant flaring features observed by HAWC.



قيم البحث

اقرأ أيضاً

290 - A. Albert , R. Alfaro , C. Alvarez 2021
The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory surveys the very high energy sky in the 300 GeV to $>100$ TeV energy range. HAWC has detected two blazars above $11sigma$, Markarian 421 (Mrk 421) and Markarian 501 (Mrk 501). The observa tions are comprised of data taken in the period between June 2015 and July 2018, resulting in a $sim 1038$ days of exposure. In this work we report the time-averaged spectral analysis for both sources above 0.5 TeV. Taking into account the flux attenuation due to the extragalactic background light (EBL), the intrinsic spectrum of Mrk 421 is described by a power law with an exponential energy cut-off with index $alpha=2.26pm(0.12)_{stat}(_{-0.2}^{+0.17})_{sys}$ and energy cut-off $E_c=5.1pm(1.6)_{stat}(_{-2.5}^{+1.4})_{sys}$ TeV, while the intrinsic spectrum of Mrk 501 is better described by a simple power law with index $alpha=2.61pm(0.11)_{stat}(_{-0.07}^{+0.01})_{sys}$. The maximum energies at which the Mrk 421 and Mrk 501 signals are detected are 9 and 12 TeV, respectively. This makes these some of the highest energy detections to date for spectra averaged over years-long timescales. Since the observation of gamma radiation from blazars provides information about the physical processes that take place in their relativistic jets, it is important to study the broad-band spectral energy distribution (SED) of these objects. To this purpose, contemporaneous data from the Large Area Telescope on board the {em Fermi} satellite and literature data, in the radio to X-ray range, were used to build time-averaged SEDs that were modeled within a synchrotron self-Compton leptonic scenario to derive the physical parameters that describe the nature of the respective jets.
79 - F. Krennrich 2003
Energy spectra of gamma-ray blazars may contain an imprint from the cosmic infrared background radiation due to gamma-ray absorption (pair-production) by soft photons constituting the extragalactic background light (EBL). The signature of this imprin t depends on the spectral shape of the EBL. In this work we correct the observed spectra of Mrk 421 and Mrk 501 for absorption using different possible realizations of the EBL, consistent with the most recent detections and limits. We present the intrinsic gamma-ray spectrum of these sources for the different EBL scenarios. These spectra reveal their true peak energy and luminosities, which provide important information on the nature and physical characteristics of the particle acceleration mechanism operating in these sources.
ANTARES is the largest high-energy neutrino telescope in the Northern Hemisphere. This contribution presents the results of a search, based on the ANTARES data collected over 17 months between November 2014 and April 2016, for high energy neutrino em ission in coincidence with TeV $gamma$-ray flares from Markarian 421 and Markarian 501, two bright BL Lac extragalactic sources highly variable in flux, detected by the HAWC observatory. The analysis is based on an unbinned likelihood-ratio maximization method. The $gamma$-ray lightcurves (LC) for each source were used to search for temporally correlated neutrinos, that would be produced in pp or p-$gamma$ interactions. The impact of different flare selection criteria on the discovery neutrino flux is discussed. Plausible neutrino spectra derived from the observed $gamma$-ray spectra in addition to generic spectra $E^{-2}$ and $E^{-2.5}$ are tested.
Mrk 421 and Mrk 501 are two close, bright and well-studied high-synchrotron-peaked blazars, which feature bright and persistent GeV and TeV emission. We use the longest and densest dataset of unbiased observations of these two sources, obtained at Te V and GeV energies during five years with FACT and Fermi-LAT. To characterize the variability and derive constraints on the emission mechanism, we augment the dataset with contemporaneous multi-wavelength observations from radio to X-rays. We correlate the light curves, identify individual flares in TeV energies and X-rays, and look for inter-band connections, which are expected from the shock propagations within the jet. For Mrk 421, we find that the X-rays and TeV energies are well correlated with close to zero lag, supporting the SSC emission scenario. The timing between the TeV, X-ray flares in Mrk 421 is consistent with periods expected in the case of Lense-Thirring precession of the accretion disc. The variability of Mrk 501 on long-term periods is also consistent with SSC, with a sub-day lag between X-rays and TeV energies. Fractional variability for both blazars shows a two bump structure with the highest variability in the X-ray and TeV bands.
ARGO-YBJ is an air shower detector array with a fully covered layer of resistive plate chambers. It is operated with a high duty cycle and a large field of view. It continuously monitors the northern sky at energies above 0.3 TeV. In this paper, we r eport a long-term monitoring of Mrk 421 over the period from 2007 November to 2010 February. This source was observed by the satellite-borne experiments Rossi X-ray Timing Explorer and Swift in the X-ray band. Mrk 421 was especially active in the first half of 2008. Many flares are observed in both X-ray and gamma-ray bands simultaneously. The gamma-ray flux observed by ARGO-YBJ has a clear correlation with the X-ray flux. No lag between the X-ray and gamma-ray photons longer than 1 day is found. The evolution of the spectral energy distribution is investigated by measuring spectral indices at four different flux levels. Hardening of the spectra is observed in both X-ray and gamma-ray bands. The gamma-ray flux increases quadratically with the simultaneously measured X-ray flux. All these observational results strongly favor the synchrotron self-Compton process as the underlying radiative mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا