ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonautonomous ultradiscrete hungry Toda lattice and a generalized box-ball system

78   0   0.0 ( 0 )
 نشر من قبل Kazuki Maeda
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kazuki Maeda




اسأل ChatGPT حول البحث

A nonautonomous version of the ultradiscrete hungry Toda lattice with a finite lattice boundary condition is derived by applying reduction and ultradiscretization to a nonautonomous two-dimensional discrete Toda lattice. It is shown that the derived ultradiscrete system has a direct connection to the box-ball system with many kinds of balls and finite carrier capacity. Particular solutions to the ultradiscrete system are constructed by using the theory of some sort of discrete biorthogonal polynomials.



قيم البحث

اقرأ أيضاً

77 - Takayuki Tsuchida 2018
We propose a new integrable generalization of the Toda lattice wherein the original Flaschka-Manakov variables are coupled to newly introduced dependent variables; the general case wherein the additional dependent variables are vector-valued is consi dered. This generalization admits a Lax pair based on an extension of the Jacobi operator, an infinite number of conservation laws and, in a special case, a simple Hamiltonian structure. In fact, the second flow of this generalized Toda hierarchy reduces to the usual Toda lattice when the additional dependent variables vanish; the first flow of the hierarchy reduces to a long wave-short wave interaction model, known as the Yajima-Oikawa system, in a suitable continuous limit. This integrable discretization of the Yajima-Oikawa system is essentially different from the discrete Yajima-Oikawa system proposed in arXiv:1509.06996 (also see https://link.aps.org/doi/10.1103/PhysRevE.91.062902) and studied in arXiv:1804.10224. Two integrable discretizations of the nonlinear Schrodinger hierarchy, the Ablowitz-Ladik hierarchy and the Konopelchenko-Chudnovsky hierarchy, are contained in the generalized Toda hierarchy as special cases.
125 - Kazuki Maeda 2018
A cellular automaton that is a generalization of the box-ball system with either many kinds of balls or finite carrier capacity is proposed and studied through two discrete integrable systems: nonautonomous discrete KP lattice and nonautonomous discr ete two-dimensional Toda lattice. Applying reduction technique and ultradiscretization procedure to these discrete systems, we derive two types of time evolution equations of the proposed cellular automaton, and particular solutions to the ultradiscrete equations.
In this paper, we propose a finite Toda lattice of CKP type (C-Toda) together with a Lax pair. Our motivation is based on the fact that the Camassa-Holm (CH) peakon dynamical system and the finite Toda lattice may be regarded as opposite flows in som e sense. As an intriguing analogue to the CH equation, the Degasperis-Procesi (DP) equation also supports the presence of peakon solutions. Noticing that the peakon solution to the DP equation is expressed in terms of bimoment determinants related to the Cauchy kernel, we impose opposite time evolution on the moments and derive the corresponding bilinear equation. The corresponding quartic representation is shown to be a continuum limit of a discrete CKP equation, due to which we call the obtained equation finite Toda lattice of CKP type. Then, a nonlinear version of the C-Toda lattice together with a Lax pair is derived. As a result, it is shown that the DP peakon lattice and the finite C-Toda lattice form opposite flows under certain transformation.
361 - M. Palese , E. Winterroth 2013
A tower for a (2+1)-dimensional Toda type system is constructed in terms of a series expansion of operators which can be interpreted as generalized Bessel coefficients; the result is formulated as an analog of the Baker-Campbell-Hausdorff formula. We tackle the problem of the construction of infinitesimal algebraic skeletons for such a tower and discuss some open problems arising along our approach. In particular, we realize the prolongation skeleton as a Kac-Moody algebra.
339 - V. Prokofev , A. Zabrodin 2021
We consider solutions of the 2D Toda lattice hierarchy which are elliptic functions of the zeroth time t_0=x. It is known that their poles as functions of t_1 move as particles of the elliptic Ruijsenaars-Schneider model. The goal of this paper is to extend this correspondence to the level of hierarchies. We show that the Hamiltonians which govern the dynamics of poles with respect to the m-th hierarchical times t_m and bar t_m of the 2D Toda lattice hierarchy are obtained from expansion of the spectral curve for the Lax matrix of the Ruijsenaars-Schneider model at the marked points.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا