ﻻ يوجد ملخص باللغة العربية
We use results from a 6-th order Taylor expansion of the QCD equation of state to construct expansions for cumulants of conserved charge fluctuations and their correlations. We show that these cumulants strongly constrain the range of applicability of hadron resonance gas model calculations. We point out that the latter is inappropriate to describe equilibrium properties of QCD at zero and non-zero values of the baryon chemical potential already at T~155 MeV.
We present a determination of chemical freeze-out conditions in heavy ion collisions based on ratios of cumulants of net electric charge fluctuations. These ratios can reliably be calculated in lattice QCD for a wide range of chemical potential value
We calculate the mean and variance of net-baryon number and net-electric charge distributions from Quantum Chromodynamics (QCD) using a next-to-leading order Taylor expansion in terms of temperature and chemical potentials. We compare these expansion
Ratios of cumulants of net proton-number fluctuations measured by the STAR Collaboration show strong deviations from a skellam distribution, which should describe thermal properties of cumulant ratios, if proton-number fluctuations are generated in e
This Workshop brought top experts, researchers, postdocs, and students from high-energy heavy ion interactions, lattice QCD and hadronic physics communities together. YSTAR2016 discussed the impact of missing hyperon resonances on QCD thermodynamics,
We argue that hadron multiplicities in central high energy nucleus-nucleus collisions are established very close to the phase boundary between hadronic and quark matter. In the hadronic picture this can be described by multi-particle collisions whose