ﻻ يوجد ملخص باللغة العربية
Context: Thanks to the importance that the star-planet relation has to our understanding of the planet formation process, the precise determination of stellar parameters for the ever increasing number of discovered extrasolar planets is of great relevance. Furthermore, precise stellar parameters are needed to fully characterize the planet properties. It is thus important to continue the efforts to determine, in the most uniform way possible, the parameters for stars with planets as new discoveries are announced. Aims: In this paper we present new precise atmospheric parameters for a sample of 50 stars with planets. The results are presented in the catalogue: SWEET-Cat. Methods: Stellar atmospheric parameters and masses for the 50 stars were derived assuming local thermodynamic equilibrium (LTE) and using high-resolution and high signal-to-noise spectra. The methodology used is based on the measurement of equivalent widths with ARES2 for a list of iron lines. The line abundances were derived using MOOG. We then used the curve of growth analysis to determine the parameters. We implemented a new minimization procedure which significantly improves the computational time. Results: The stellar parameters for the 50 stars are presented and compared with previously determined literature values. For SWEET-Cat, we compile values for the effective temperature, surface gravity, metallicity, and stellar mass for almost all the planet host stars listed in the Extrasolar Planets Encyclopedia. This data will be updated on a continuous basis. The data can be used for statistical studies of the star-planet correlation, and for the derivation of consistent properties for known planets.
In the era of vast spectroscopic surveys focusing on Galactic stellar populations, astronomers want to exploit the large quantity and good quality of data to derive their atmospheric parameters without losing precision from automatic procedures. In t
Due to the importance that the star-planet relation has to our understanding of the planet formation process, the precise determination of stellar parameters for the ever increasing number of discovered extra-solar planets is of great relevance. Furt
Context: Exoplanets have now been proven to be very common. The number of its detections continues to grow following the development of better instruments and missions. One key step for the understanding of these worlds is their characterization, whi
Aims. The catalog of Stars With ExoplanETs (SWEET-Cat) was originally introduced in 2013. Since then many more exoplanets have been confirmed, increasing significantly the number of host stars listed there. A crucial step toward a comprehensive under
In this paper we describe Kea a new spectroscopic fitting method to derive stellar parameters from moderate to low signal/noise, high-resolution spectra. We developed this new tool to analyze the massive data set of the Kepler mission reconnaissance