ترغب بنشر مسار تعليمي؟ اضغط هنا

A Flexible Privacy-preserving Framework for Singular Value Decomposition under Internet of Things Environment

67   0   0.0 ( 0 )
 نشر من قبل Shuo Chen
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The singular value decomposition (SVD) is a widely used matrix factorization tool which underlies plenty of useful applications, e.g. recommendation system, abnormal detection and data compression. Under the environment of emerging Internet of Things (IoT), there would be an increasing demand for data analysis to better humans lives and create new economic growth points. Moreover, due to the large scope of IoT, most of the data analysis work should be done in the network edge, i.e. handled by fog computing. However, the devices which provide fog computing may not be trustable while the data privacy is often the significant concern of the IoT application users. Thus, when performing SVD for data analysis purpose, the privacy of user data should be preserved. Based on the above reasons, in this paper, we propose a privacy-preserving fog computing framework for SVD computation. The security and performance analysis shows the practicability of the proposed framework. Furthermore, since different applications may utilize the result of SVD operation in different ways, three applications with different objectives are introduced to show how the framework could flexibly achieve the purposes of different applications, which indicates the flexibility of the design.



قيم البحث

اقرأ أيضاً

Privacy protection in electronic healthcare applications is an important consideration due to the sensitive nature of personal health data. Internet of Health Things (IoHT) networks have privacy requirements within a healthcare setting. However, thes e networks have unique challenges and security requirements (integrity, authentication, privacy and availability) must also be balanced with the need to maintain efficiency in order to conserve battery power, which can be a significant limitation in IoHT devices and networks. Data are usually transferred without undergoing filtering or optimization, and this traffic can overload sensors and cause rapid battery consumption when interacting with IoHT networks. This consequently poses restrictions on the practical implementation of these devices. As a solution to address the issues, this paper proposes a privacy-preserving two-tier data inference framework, this can conserve battery consumption by reducing the data size required to transmit through inferring the sensed data and can also protect the sensitive data from leakage to adversaries. Results from experimental evaluations on privacy show the validity of the proposed scheme as well as significant data savings without compromising the accuracy of the data transmission, which contributes to energy efficiency of IoHT sensor devices.
With an enormous range of applications, Internet of Things (IoT) has magnetized industries and academicians from everywhere. IoT facilitates operations through ubiquitous connectivity by providing Internet access to all the devices with computing cap abilities. With the evolution of wireless infrastructure, the focus from simple IoT has been shifted to smart, connected and mobile IoT (M-IoT) devices and platforms, which can enable low-complexity, low-cost and efficient computing through sensors, machines, and even crowdsourcing. All these devices can be grouped under a common term of M-IoT. Even though the positive impact on applications has been tremendous, security, privacy and trust are still the major concerns for such networks and an insufficient enforcement of these requirements introduces non-negligible threats to M-IoT devices and platforms. Thus, it is important to understand the range of solutions which are available for providing a secure, privacy-compliant, and trustworthy mechanism for M-IoT. There is no direct survey available, which focuses on security, privacy, trust, secure protocols, physical layer security and handover protections in M-IoT. This paper covers such requisites and presents comparisons of state-the-art solutions for IoT which are applicable to security, privacy, and trust in smart and connected M-IoT networks. Apart from these, various challenges, applications, advantages, technologies, standards, open issues, and roadmap for security, privacy and trust are also discussed in this paper.
Internet of Things (IoT) is an innovative paradigm envisioned to provide massive applications that are now part of our daily lives. Millions of smart devices are deployed within complex networks to provide vibrant functionalities including communicat ions, monitoring, and controlling of critical infrastructures. However, this massive growth of IoT devices and the corresponding huge data traffic generated at the edge of the network created additional burdens on the state-of-the-art centralized cloud computing paradigm due to the bandwidth and resources scarcity. Hence, edge computing (EC) is emerging as an innovative strategy that brings data processing and storage near to the end users, leading to what is called EC-assisted IoT. Although this paradigm provides unique features and enhanced quality of service (QoS), it also introduces huge risks in data security and privacy aspects. This paper conducts a comprehensive survey on security and privacy issues in the context of EC-assisted IoT. In particular, we first present an overview of EC-assisted IoT including definitions, applications, architecture, advantages, and challenges. Second, we define security and privacy in the context of EC-assisted IoT. Then, we extensively discuss the major classifications of attacks in EC-assisted IoT and provide possible solutions and countermeasures along with the related research efforts. After that, we further classify some security and privacy issues as discussed in the literature based on security services and based on security objectives and functions. Finally, several open challenges and future research directions for secure EC-assisted IoT paradigm are also extensively provided.
In this paper, we present Fedlearn-Algo, an open-source privacy preserving machine learning platform. We use this platform to demonstrate our research and development results on privacy preserving machine learning algorithms. As the first batch of no vel FL algorithm examples, we release vertical federated kernel binary classification model and vertical federated random forest model. They have been tested to be more efficient than existing vertical federated learning models in our practice. Besides the novel FL algorithm examples, we also release a machine communication module. The uniform data transfer interface supports transferring widely used data formats between machines. We will maintain this platform by adding more functional modules and algorithm examples. The code is available at https://github.com/fedlearnAI/fedlearn-algo.
How to train a machine learning model while keeping the data private and secure? We present CodedPrivateML, a fast and scalable approach to this critical problem. CodedPrivateML keeps both the data and the model information-theoretically private, whi le allowing efficient parallelization of training across distributed workers. We characterize CodedPrivateMLs privacy threshold and prove its convergence for logistic (and linear) regression. Furthermore, via extensive experiments on Amazon EC2, we demonstrate that CodedPrivateML provides significant speedup over cryptographic approaches based on multi-party computing (MPC).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا