ترغب بنشر مسار تعليمي؟ اضغط هنا

Decay rates at infinity for solutions to periodic Schr{o}dinger equations

89   0   0.0 ( 0 )
 نشر من قبل Daniel M. Elton
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Daniel M. Elton




اسأل ChatGPT حول البحث

We consider the equation $Delta u=Vu$ in exterior domains in $mathbb{R}^2$ and $mathbb{R}^3$, where $V$ has certain periodicity properties. In particular we show that such equations cannot have non-trivial superexponentially decaying solutions. As an application this leads to a new proof for the absolute continuity of the spectrum of particular periodic Schr{o}dinger operators. The equation $Delta u=Vu$ is studied as part of a broader class of elliptic evolution equations.



قيم البحث

اقرأ أيضاً

This paper focuses on the following class of fractional magnetic Schr{o}dinger equations begin{equation*} (-Delta)_{A}^{s}u+V(x)u=g(vert uvert^{2})u+lambdavert uvert^{q-2}u, quad mbox{in } mathbb{R}^{N}, end{equation*} where $(-Delta)_{A}^{s}$ is t he fractional magnetic Laplacian, $A :mathbb{R}^N rightarrow mathbb{R}^N$ is the magnetic potential, $sin (0,1)$, $N>2s$, $lambda geq0$ is a parameter, $V:mathbb{R}^N rightarrow mathbb{R}$ is a potential function that may decay to zero at infinity and $g: mathbb{R}_{+} rightarrow mathbb{R}$ is a continuous function with subcritical growth. We deal with supercritical case $qgeq 2^*_s:=2N/(N-2s)$. Our approach is based on variational methods combined with penalization technique and $L^{infty}$-estimates.
119 - Haoyu Li , Zhi-Qiang Wang 2020
We investigate the structure of nodal solutions for coupled nonlinear Schr{o}dinger equations in the repulsive coupling regime. Among other results, for the following coupled system of $N$ equations, we prove the existence of infinitely many nodal so lutions which share the same componentwise-prescribed nodal numbers begin{equation}label{ab} left{ begin{array}{lr} -{Delta}u_{j}+lambda u_{j}=mu u^{3}_{j}+sum_{i eq j}beta u_{j}u_{i}^{2} ,,,,,,, in W , u_{j}in H_{0,r}^{1}(W), ,,,,,,,,j=1,dots,N, end{array} right. end{equation} where $W$ is a radial domain in $mathbb R^n$ for $nleq 3$, $lambda>0$, $mu>0$, and $beta <0$. More precisely, let $p$ be a prime factor of $N$ and write $N=pB$. Suppose $betaleq-frac{mu}{p-1}$. Then for any given non-negative integers $P_{1},P_{2},dots,P_{B}$, (ref{ab}) has infinitely many solutions $(u_{1},dots,u_{N})$ such that each of these solutions satisfies the same property: for $b=1,...,B$, $u_{pb-p+i}$ changes sign precisely $P_b$ times for $i=1,...,p$. The result reveals the complex nature of the solution structure in the repulsive coupling regime due to componentwise segregation of solutions. Our method is to combine a heat flow approach as deformation with a minimax construction of the symmetric mountain pass theorem using a $mathbb Z_p$ group action index. Our method is robust, also allowing to give the existence of one solution without assuming any symmetry of the coupling.
82 - Bobo Hua , Wendi Xu 2021
In this paper, we study the nonlinear Schr{o}dinger equation $ -Delta u+V(x)u=f(x,u) $on the lattice graph $ mathbb{Z}^{N}$. Using the Nehari method, we prove that when $f$ satisfies some growth conditions and the potential function $V$ is periodic o r bounded, the above equation admits a ground state solution. Moreover, we extend our results from $mathbb{Z}^{N}$ to quasi-transitive graphs.
103 - Zhaoyang Yun , Zhitao Zhang 2021
In this paper, we study important Schr{o}dinger systems with linear and nonlinear couplings begin{equation}label{eq:diricichlet} begin{cases} -Delta u_1-lambda_1 u_1=mu_1 |u_1|^{p_1-2}u_1+r_1beta |u_1|^{r_1-2}u_1|u_2|^{r_2}+kappa (x)u_2~hbox{in}~math bb{R}^N, -Delta u_2-lambda_2 u_2=mu_2 |u_2|^{p_2-2}u_2+r_2beta |u_1|^{r_1}|u_2|^{r_2-2}u_2+kappa (x)u_1~ hbox{in}~mathbb{R}^N, u_1in H^1(mathbb{R}^N), u_2in H^1(mathbb{R}^N), onumber end{cases} end{equation} with the condition $$int_{mathbb{R}^N} u_1^2=a_1^2, int_{mathbb{R}^N} u_2^2=a_2^2,$$ where $Ngeq 2$, $mu_1,mu_2,a_1,a_2>0$, $betainmathbb{R}$, $2<p_1,p_2<2^*$, $2<r_1+r_2<2^*$, $kappa(x)in L^{infty}(mathbb{R}^N)$ with fixed sign and $lambda_1,lambda_2$ are Lagrangian multipliers. We use Ekland variational principle to prove this system has a normalized radially symmetric solution for $L^2-$subcritical case when $Ngeq 2$, and use minimax method to prove this system has a normalized radially symmetric positive solution for $L^2-$supercritical case when $N=3$, $p_1=p_2=4, r_1=r_2=2$.
In this paper, we study the existence and instability of standing waves with a prescribed $L^2$-norm for the fractional Schr{o}dinger equation begin{equation} ipartial_{t}psi=(-Delta)^{s}psi-f(psi), qquad (0.1)end{equation} where $0<s<1$, $f(psi)=|ps i|^{p}psi$ with $frac{4s}{N}<p<frac{4s}{N-2s}$ or $f(psi)=(|x|^{-gamma}ast|psi|^2)psi$ with $2s<gamma<min{N,4s}$. To this end, we look for normalized solutions of the associated stationary equation begin{equation} (-Delta)^s u+omega u-f(u)=0. qquad (0.2) end{equation} Firstly, by constructing a suitable submanifold of a $L^2$-sphere, we prove the existence of a normalized solution for (0.2) with least energy in the $L^2$-sphere, which corresponds to a normalized ground state standing wave of(0.1). Then, we show that each normalized ground state of (0.2) coincides a ground state of (0.2) in the usual sense. Finally, we obtain the sharp threshold of global existence and blow-up for (0.1). Moreover, we can use this sharp threshold to show that all normalized ground state standing waves are strongly unstable by blow-up.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا