ﻻ يوجد ملخص باللغة العربية
Correspondence homomorphisms are both a generalization of standard homomorphisms and a generalization of correspondence colourings. For a fixed target graph $H$, the problem is to decide whether an input graph $G$, with each edge labeled by a pair of permutations of $V(H)$, admits a homomorphism to $H$ `corresponding to the labels, in a sense explained below. We classify the complexity of this problem as a function of the fixed graph $H$. It turns out that there is dichotomy -- each of the problems is polynomial-time solvable or NP-complete. While most graphs $H$ yield NP-complete problems, there are interesting cases of graphs $H$ for which the problem is solved by Gaussian elimination. We also classify the complexity of the analogous correspondence {em list homomorphism} problems, and also the complexity of a {em bipartite version} of both problems. We emphasize the proofs for the case when $H$ is reflexive, but, for the record, we include a rough sketch of the remaining proofs in an Appendix.
We initiate the study of computational complexity of graph coverings, aka locally bijective graph homomorphisms, for {em graphs with semi-edges}. The notion of graph covering is a discretization of coverings between surfaces or topological spaces, a
We prove that for every $n$-vertex graph $G$, the extension complexity of the correlation polytope of $G$ is $2^{O(mathrm{tw}(G) + log n)}$, where $mathrm{tw}(G)$ is the treewidth of $G$. Our main result is that this bound is tight for graphs contained in minor-closed classes.
Diffusion-Limited Aggregation (DLA) is a cluster-growth model that consists in a set of particles that are sequentially aggregated over a two-dimensional grid. In this paper, we introduce a biased version of the DLA model, in which particles are limi
Let $G$ be a graph such that each edge has its list of available colors, and assume that each list is a subset of the common set consisting of $k$ colors. Suppose that we are given two list edge-colorings $f_0$ and $f_r$ of $G$, and asked whether the
We study the dynamic and complexity of the generalized Q2R automaton. We show the existence of non-polynomial cycles as well as its capability to simulate with the synchronous update the classical version of the automaton updated under a block sequen