ترغب بنشر مسار تعليمي؟ اضغط هنا

Irradiation of Materials with Short, Intense Ion pulses at NDCX-II

153   0   0.0 ( 0 )
 نشر من قبل Peter Seidl
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10^11 ions, 1-mm radius, and 2-30 ns FWHM duration have been created with corresponding fluences in the range of 0.1 to 0.7 J/cm^2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV He+ ion beam is neutralized in a drift compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing accelerator performance.

قيم البحث

اقرأ أيضاً

76 - P. A. Seidl , Q. Ji , A. Persaud 2016
We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and summarize recent studies of material properties created with nanosecond and millimeter-scale ion beam pulses. The scientific topics being explored include the dynamics of ion induced damage in materials, materials synthesis far from equilibrium, warm dense matter and intense beam-plasma physics. We summarize the improved accelerator performance, diagnostics and results of beam-induced irradiation of thin samples of, e.g., tin and silicon. Bunches with over 3x10^10 ions, 1- mm radius, and 2-30 ns FWHM duration have been created. To achieve these short pulse durations and mm-scale focal spot radii, the 1.2 MeV He+ ion beam is neutralized in a drift compression section which removes the space charge defocusing effect during final compression and focusing. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing accelerator performance; these keep pace with the accelerator repetition rate of ~1/minute.
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r < 1 mm within 2 ns FWHM and approximately 10 ^10 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminium perovskite using the fully integrated accelerator and neutralized drift compression components.
89 - C. Hansel , M. Yadav , P. Manwani 2021
A future plasma based linear collider has the potential to reach unprecedented energies and transform our understanding of high energy physics. The extremely dense beams in such a device would cause the plasma ions to fall toward the axis. For more m ild ion motion, this introduces a nonlinear perturbation to the focusing fields inside of the bubble. However, for extreme ion motion, the ion distribution collapses to a quasi-equilibrium characterized by a thin filament of extreme density on the axis which generates strong, nonlinear focusing fields. These fields can provoke unacceptable emittance growth that can be reduced through careful beam matching. In this paper, we discuss the rich physics of ion motion, give a brief overview of plans for the E-314 experiment at FACET-II which will experimentally demonstrate ion motion in plasma accelerators, and present results of particle-in-cell simulations of ion motion relevant to the E-314 experiment.
67 - L. Fang , T. Osipov , B. Murphy 2013
We investigate molecular dynamics of multiple ionization in N2 through multiple core-level photoabsorption and subsequent Auger decay processes induced by intense, short X-ray free electron laser pulses. The timing dynamics of the photoabsorption and dissociation processes is mapped onto the kinetic energy of the fragments. Measurements of the latter allow us to map out the average internuclear separation for every molecular photoionization sequence step and obtain the average time interval between the photoabsorption events. Using multiphoton ionization as a tool of multiple-pulse pump-probe scheme, we demonstrate the modification of the ionization dynamics as we vary the x-ray laser pulse duration.
341 - B. Ziaja , H. Wabnitz , E. Weckert 2007
The kinetic Boltzmann equation is used to model the non-equilibrium ionization phase that initiates the evolution of atomic clusters irradiated with single pulses of intense vacuum ultraviolet radiation. The duration of the pulses is < 50 fs and thei r intensity in the focus is < 10^{14} W/cm^2. This statistical model includes various processes contributing to the sample dynamics at this particular radiation wavelength, and is computationally efficient also for large samples. Two effects are investigated in detail: the impact of the electron heating rate and the effect of the plasma environment on the overall ionization dynamics. Results on the maximal ion charge, the average ion charge and the average energy absorbed per atom estimated with this model are compared to the experimental data obtained at the free-electron-laser facility FLASH at DESY. Our analysis confirms that the dynamics within the irradiated samples is complex, and the total ionization rate is the resultant of various processes. In particular, within the theoretical framework defined in this model the high charge states as observed in experiment cannot be obtained with the standard heating rates derived with Coulomb atomic potentials. Such high charge states can be created with the enhanced heating rates derived with the effective atomic potentials. The modification of ionization potentials by plasma environment is found to have less effect on the ionization dynamics than the electron heating rate. We believe that our results are a step towards better understanding the dynamics within the samples irradiated with intense VUV radiation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا