ترغب بنشر مسار تعليمي؟ اضغط هنا

Few-layer graphene patterned bottom gates for van der Waals heterostructures

126   0   0.0 ( 0 )
 نشر من قبل Jonathan Eroms
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a method of local gating for van der Waals heterostructures, employing a few-layer graphene patterned bottom gate. Being a member of the 2D material family, few-layer graphene adapts perfectly to the commonly used stacking method. Its versatility regarding patterning as well as its flatness make it an ideal candidate for experiments on locally gated 2D materials. Moreover, in combination with ultra-thin hexagonal boron nitride as an insulating layer, sharp potential steps can be created and the quality of the investigated 2D material can be sustained. To underline the good feasibility and performance, we show results on transport experiments in periodically modulated graphene- boron nitride heterostructures, where the charge carrier density is tuned via locally acting patterned few layer graphene bottom gates and a global back gate.

قيم البحث

اقرأ أيضاً

Graphene constitutes one of the key elements in many functional van der Waals heterostructures. However, it has negligible optical visibility due to its monolayer nature. Here we study the visibility of graphene in various van der Waals heterostructu res and include the effects of the source spectrum, oblique incidence and the spectral sensitivity of the detector to obtain a realistic model. A visibility experiment is performed at different wavelengths, resulting in a very good agreement with our calculations. This allows us to reliably predict the conditions for better visibility of graphene in van der Waals heterostructures. The framework and the codes provided in this work can be extended to study the visibility of any 2D material within an arbitrary van der Waals heterostructure.
Magnetic proximity effects are crucial ingredients for engineering spintronic, superconducting, and topological phenomena in heterostructures. Such effects are highly sensitive to the interfacial electronic properties, such as electron wave function overlap and band alignment. The recent emergence of van der Waals (vdW) magnets enables the possibility of tuning proximity effects via designing heterostructures with atomically clean interfaces. In particular, atomically thin CrI3 exhibits layered antiferromagnetism, where adjacent ferromagnetic monolayers are antiferromagnetically coupled. Exploiting this magnetic structure, we uncovered a layer-resolved magnetic proximity effect in heterostructures formed by monolayer WSe2 and bi/trilayer CrI3. By controlling the individual layer magnetization in CrI3 with a magnetic field, we found that the spin-dependent charge transfer between WSe2 and CrI3 is dominated by the interfacial CrI3 layer, while the proximity exchange field is highly sensitive to the layered magnetic structure as a whole. These properties enabled us to use monolayer WSe2 as a spatially sensitive magnetic sensor to map out layered antiferromagnetic domain structures at zero magnetic field as well as antiferromagnetic/ferromagnetic domains near the spin-flip transition in bilayer CrI3. Our work reveals a new way to control proximity effects and probe interfacial magnetic order via vdW engineering.
We report an experimental study of excitons in a double quantum well van der Waals heterostructure made of atomically thin layers of Mo* and hexagonal boron nitride (hBN). The emission of neutral and charged excitons is controlled by gate voltage, te mperature, and both the helicity and the power of optical excitation.
Heterostructures play significant roles in modern semiconductor devices and micro/nanosystems in a plethora of applications in electronics, optoelectronics, and transducers. While state-of-the-art heterostructures often involve stacks of crystalline epi-layers each down to a few nanometers thick, the intriguing limit would be heterto-atomic-layer structures. Here we report the first experimental demonstration of freestanding van der Waals heterostructures and their functional nanomechanical devices. By stacking single-layer (1L) MoS2 on top of suspended single-, bi-, tri- and four-layer (1L to 4L) graphene sheets, we realize array of MoS2-graphene heterostructures with varying thickness and size. These heterostructures all exhibit robust nanomechanical resonances in the very high frequency (VHF) band (up to ~100 MHz). We observe that fundamental-mode resonance frequencies of the heterostructure devices fall between the values of graphene and MoS2 devices. Quality (Q) factors of heterostructure resonators are lower than those of graphene but comparable to those of MoS2 devices, suggesting interface damping related to interlayer interactions in the van der Waals heterostructures. This study validates suspended atomic layer heterostructures as an effective device platform and opens opportunities for exploiting mechanically coupled effects and interlayer interactions in such devices.
Two dimensional materials are usually envisioned as flat, truly 2D layers. However out-of-plane corrugations are inevitably present in these materials. In this manuscript, we show that graphene flakes encapsulated between insulating crystals (hBN, WS e2), although having large mobilities, surprisingly contain out-of-plane corrugations. The height fluctuations of these corrugations are revealed using weak localization measurements in the presence of a static in-plane magnetic field. Due to the random out-of-plane corrugations, the in-plane magnetic field results in a random out-of-plane component to the local graphene plane, which leads to a substantial decrease of the phase coherence time. Atomic force microscope measurements also confirm a long range height modulation present in these crystals. Our results suggest that phase coherent transport experiments relying on purely in-plane magnetic fields in van der Waals heterostructures have to be taken with serious care.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا