ﻻ يوجد ملخص باللغة العربية
Ionic liquids are promising candidates for electrolytes in energy-storage systems. We demonstrate that mixing two ionic liquids allows to precisely tune their physical properties, like the dc conductivity. Moreover, these mixtures enable the gradual modification of the fragility parameter, which is believed to be a measure of the complexity of the energy landscape in supercooled liquids. The physical origin of this index is still under debate; therefore, mixing ionic liquids can provide further insights. From the chemical point of view, tuning ionic liquids via mixing is an easy and thus an economic way. For this study, we performed detailed investigations by broadband dielectric spectroscopy and differential scanning calorimetry on two mixing series of ionic liquids. One series combines an imidazole based with a pyridine based ionic liquid and the other two different anions in an imidazole based ionic liquid. The analysis of the glass-transition temperatures and the thorough evaluations of the measured dielectric permittivity and conductivity spectra reveal that the dynamics in mixtures of ionic liquids are well defined by the fractions of their parent compounds.
Ionic liquids are a special category of molten salts with melting points near ambient temperatures or by convention below 100 C. Owing to their numerous valuable physicochemical properties as bulk liquids, solvents, at surfaces and in confined enviro
We develop the elastically collective nonlinear Langevin equation theory of bulk relaxation of glass-forming liquids to investigate molecular mobility under compression conditions. The applied pressure restricts more molecular motion and therefore si
Ionic Liquids (ILs) are organic molten salts characterized by the total absence of solvent. They show remarkable properties: low vapor pressure, high ionic conductivity, high chemical, thermal and electrochemical stability. These electrolytes meet th
The material dispersion of the [Ckmim][BF4] (k = 2,3,4,6,7,8,10) family of ionic liquids is measured at several temperatures over a broad spectral range from 300 nm to 1550 nm. The experimental curves are fitted to a modified three-resonance Sellmeie
We investigate the behavior of hydrated sulfonated polysulfones over a range of ion contents through differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and molecular dynamics (MD) simulations. Experimental eviden