ﻻ يوجد ملخص باللغة العربية
We investigate the etching of a pure hydrogen plasma on graphite samples and graphene flakes on SiO$_2$ and hexagonal Boron-Nitride (hBN) substrates. The pressure and distance dependence of the graphite exposure experiments reveals the existence of two distinct plasma regimes: the direct and the remote plasma regime. Graphite surfaces exposed directly to the hydrogen plasma exhibit numerous etch pits of various size and depth, indicating continuous defect creation throughout the etching process. In contrast, anisotropic etching forming regular and symmetric hexagons starting only from preexisting defects and edges is seen in the remote plasma regime, where the sample is located downstream, outside of the glowing plasma. This regime is possible in a narrow window of parameters where essentially all ions have already recombined, yet a flux of H-radicals performing anisotropic etching is still present. At the required process pressures, the radicals can recombine only on surfaces, not in the gas itself. Thus, the tube material needs to exhibit a sufficiently low H radical recombination coefficient, such a found for quartz or pyrex. In the remote regime, we investigate the etching of single layer and bilayer graphene on SiO$_2$ and hBN substrates. We find isotropic etching for single layer graphene on SiO$_2$, whereas we observe highly anisotropic etching for graphene on a hBN substrate. For bilayer graphene, anisotropic etching is observed on both substrates. Finally, we demonstrate the use of artificial defects to create well defined graphene nanostructures with clean crystallographic edges.
We studied, by scanning tunneling microscopy, the morphology of nanopits of monolayer depth created at graphite surfaces by hydrogen plasma etching under various conditions such as H$_2$ pressure, temperature, etching time, and RF power of the plasma
Catalytic hydrogenation of graphite has recently attracted renewed attention, as a route for nano-patterning of graphene and to produce graphene nano-ribbons. These reports show that metallic nanoparticles etch surface layers of graphite, or graphene
We investigate the quality of hydrogen plasma defined graphene edges by Raman spectroscopy, atomic resolution AFM and low temperature electronic transport measurements. The exposure of graphite samples to a remote hydrogen plasma leads to the formati
We demonstrate anisotropic etching of single-layer graphene by thermally-activated nickel nanoparticles. Using this technique, we obtain sub-10nm nanoribbons and other graphene nanostructures with edges aligned along a single crystallographic directi
Graphene is considered to be a promising material for future electronics. The envisaged transistor applications often rely on precision cutting of graphene sheets with nanometer accuracy. In this letter we demonstrate graphene-based quantum dots crea