ﻻ يوجد ملخص باللغة العربية
The antiferromagnetic spin-one chain is considerably one of the most fundamental quantum many-body systems, with symmetry protected topological order in the ground state. Here, we present results for its dynamical spin structure factor at finite temperatures, based on a combination of exact numerical diagonalization, matrix-product-state calculations and quantum Monte Carlo simulations. Open finite chains exhibit a sub-gap band in the thermal spectral functions, indicative of localized edge-states. Moreover, we observe the thermal activation of a distinct low-energy continuum contribution to the spin spectral function with an enhanced spectral weight at low momenta and its upper threshold. This emerging thermal spectral feature of the Haldane spin-one chain is shown to result from intra-band magnon scattering due to the thermal population of the single-magnon branch, which features a large bandwidth-to-gap ratio. These findings are discussed with respect to possible future studies on spin-one chain compounds based on inelastic neutron scattering.
We use extensive DMRG calculations to show that a classification of SU(n) spin chains with regard to the existence of spinon confinement and hence a Haldane gap obtained previously for valence bond solid models applies to SU(n) Heisenberg chains as w
The $S=1$ Haldane state is constructed from a product of local singlet dimers in the bulk and topological states at the edges of a chain. It is a fundamental representative of topological quantum matter. Its well-known representative, the quasi-one-d
Using numerical diagonalization techniques, we explore the effect of local and bond disorder on the finite temperature spin and thermal conductivities of the one dimensional anisotropic spin-1/2 Heisenberg model. High-temperature results for local di
Quantum spin liquids are long-range entangled states of matter with emergent gauge fields and fractionalized excitations. While candidate materials, such as the Kitaev honeycomb ruthenate $alpha$-RuCl$_3$, show magnetic order at low temperatures $T$,
We compare the ground-state features of alternating ferrimagnetic chains $(1/2, S)$ with $S=1,3/2,2,5/2$ in a magnetic field and the corresponding Holstein-Primakoff bosonic models up to order $sqrt{s/S}$, with $s=1/2$, considering the fully polarize