ﻻ يوجد ملخص باللغة العربية
Exactly solvable models have played an important role in establishing the sophisticated modern understanding of equilibrium many-body physics. And conversely, the relative scarcity of solutions for non-equilibrium models greatly limits our understanding of systems away from thermal equilibrium. We study a family of non-equilibrium models, some of which can be viewed as dissipative analogues of the transverse-field Ising model, in that an effectively classical Hamiltonian is frustrated by dissipative processes that drive the system toward states that do not commute with the Hamiltonian. Surprisingly, a broad and experimentally relevant subset of these models can be solved efficiently in any number of spatial dimensions. We leverage these solutions to prove a no-go theorem on steady-state phase transitions in a many-body model that can be realized naturally with Rydberg atoms or trapped ions, and to compute the effects of decoherence on a canonical trapped-ion-based quantum computation architecture.
We study the propagation of strongly interacting Rydberg polaritons through an atomic medium in a one-dimensional optical lattice. We derive an effective single-band Hubbard model to describe the dynamics of the dark state polaritons under realistic
We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter
Closed quantum many-body systems out of equilibrium pose several long-standing problems in physics. Recent years have seen a tremendous progress in approaching these questions, not least due to experiments with cold atoms and trapped ions in instance
We observe interaction-induced broadening of the two-photon 5s-18s transition in 87Rb atoms trapped in a 3D optical lattice. The measured linewidth increases by nearly two orders of magnitude with increasing atomic density and excitation strength, wi
We propose a dissipative method for the preparation of many-body steady entangled states in spin and fermionic chains. The scheme is accomplished by means of an engineered set of Lindbladians acting over the eigenmodes of the system, whose spectrum i