ﻻ يوجد ملخص باللغة العربية
In this paper, we combine the $ u$-Two-Higgs-Doublet-Model ($ u$THDM) with the inverse seesaw mechanisms. In this model, the Yukawa couplings involving the sterile neutrinos and the exotic Higgs bosons can be of order one in the case of a large $tan beta$. We calculated the corrections to the Z-resonance parameters $R_{l_i}$, $A_{l_i}$, $N_{ u}$, together with the $l_1 rightarrow l_2 gamma$ branching ratios, and the muon anomalous $g-2$. Compared with the current bounds and plans for the future colliders, we find that the corrections to the electroweak parameters can be contrained or discovered in much of the parameter space.
We consider a neutrino Two Higgs Doublet Model ($ u$THDM) in which neutrinos obtain {it naturally} small Dirac masses from the soft symmetry breaking of a global $U(1)_X$ symmetry. We extended the model so the soft term is generated by the spontaneou
In this work, we present a comparative study of the three of the seesaw models, viz., type II, inverse and linear seesaw models, to investigate about light neutrino masses and mixings, flavour structure, neutrinoless double beta decay ($ 0 u beta bet
The inverse seesaw mechanism has been claimed to be consistent with existing bounds while accommodating the muon anomalous magnetic moment (g-2). We revisit this idea and review the importance of nonunitarity bounds over the inverse seesaw mechanism,
The inverse neutrino seesaw, characterised by only one source of lepton number violation at an ultralight $O$(keV) scale and observable new phenomena at TeV energies accessible to the LHC, is considered. Maximal zero textures of the $3times 3$ lighte
We consider the inverse Seesaw scenario for neutrino masses with the approximate Lepton number symmetry broken dynamically by a scalar with Lepton number two. We show that the Majoron associated to the spontaneous symmetry breaking can alleviate the