ترغب بنشر مسار تعليمي؟ اضغط هنا

Mixed linear-nonlinear least squares regression

91   0   0.0 ( 0 )
 نشر من قبل R. Michael Porter
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of fitting experimental data to a given model function $f(t; p_1,p_2,dots,p_N)$ is conventionally solved numerically by methods such as that of Levenberg-Marquardt, which are based on approximating the Chi-squared measure of discrepancy by a quadratic function. Such nonlinear iterative methods are usually necessary unless the function $f$ to be fitted is itself a linear function of the parameters $p_n$, in which case an elementary linear Least Squares regression is immediately available. When linearity is present in some, but not all, of the parameters, we show how to streamline the optimization method by reducing the nonlinear activity to the nonlinear parameters only. Numerical examples are given to demonstrate the effectiveness of this approach. The main idea is to replace entries corresponding to the linear terms in the numerical difference quotients with an optimal value easily obtained by linear regression. More generally, the idea applies to minimization problems which are quadratic in some of the parameters. We show that the covariance matrix of $chi^2$ remains the same even though the derivatives are calculated in a different way. For this reason, the standard non-linear optimization methods can be fully applied.



قيم البحث

اقرأ أيضاً

Given a linear regression setting, Iterative Least Trimmed Squares (ILTS) involves alternating between (a) selecting the subset of samples with lowest current loss, and (b) re-fitting the linear model only on that subset. Both steps are very fast and simple. In this paper we analyze ILTS in the setting of mixed linear regression with corruptions (MLR-C). We first establish deterministic conditions (on the features etc.) under which the ILTS iterate converges linearly to the closest mixture component. We also provide a global algorithm that uses ILTS as a subroutine, to fully solve mixed linear regressions with corruptions. We then evaluate it for the widely studied setting of isotropic Gaussian features, and establish that we match or better existing results in terms of sample complexity. Finally, we provide an ODE analysis for a gradient-descent variant of ILTS that has optimal time complexity. Our results provide initial theoretical evidence that iteratively fitting to the best subset of samples -- a potentially widely applicable idea -- can provably provide state of the art performance in bad training data settings.
87 - Ben Boukai , Yue Zhang 2018
We consider a resampling scheme for parameters estimates in nonlinear regression models. We provide an estimation procedure which recycles, via random weighting, the relevant parameters estimates to construct consistent estimates of the sampling dist ribution of the various estimates. We establish the asymptotic normality of the resampled estimates and demonstrate the applicability of the recycling approach in a small simulation study and via example.
In a regression setting with response vector $mathbf{y} in mathbb{R}^n$ and given regressor vectors $mathbf{x}_1,ldots,mathbf{x}_p in mathbb{R}^n$, a typical question is to what extent $mathbf{y}$ is related to these regressor vectors, specifically, how well can $mathbf{y}$ be approximated by a linear combination of them. Classical methods for this question are based on statistical models for the conditional distribution of $mathbf{y}$, given the regressor vectors $mathbf{x}_j$. Davies and Duembgen (2020) proposed a model-free approach in which all observation vectors $mathbf{y}$ and $mathbf{x}_j$ are viewed as fixed, and the quality of the least squares fit of $mathbf{y}$ is quantified by comparing it with the least squares fit resulting from $p$ independent white noise regressor vectors. The purpose of the present note is to explain in a general context why the model-based and model-free approach yield the same p-values, although the interpretation of the latter is different under the two paradigms.
We consider best approximation problems in a nonlinear subset $mathcal{M}$ of a Banach space of functions $(mathcal{V},|bullet|)$. The norm is assumed to be a generalization of the $L^2$-norm for which only a weighted Monte Carlo estimate $|bullet|_n $ can be computed. The objective is to obtain an approximation $vinmathcal{M}$ of an unknown function $u in mathcal{V}$ by minimizing the empirical norm $|u-v|_n$. We consider this problem for general nonlinear subsets and establish error bounds for the empirical best approximation error. Our results are based on a restricted isometry property (RIP) which holds in probability and is independent of the nonlinear least squares setting. Several model classes are examined where analytical statements can be made about the RIP and the results are compared to existing sample complexity bounds from the literature. We find that for well-studied model classes our general bound is weaker but exhibits many of the same properties as these specialized bounds. Notably, we demonstrate the advantage of an optimal sampling density (as known for linear spaces) for sets of functions with sparse representations.
We consider the problem of efficiently solving large-scale linear least squares problems that have one or more linear constraints that must be satisfied exactly. Whilst some classical approaches are theoretically well founded, they can face difficult ies when the matrix of constraints contains dense rows or if an algorithmic transformation used in the solution process results in a modified problem that is much denser than the original one. To address this, we propose modifications and new ideas, with an emphasis on requiring the constraints are satisfied with a small residual. We examine combining the null-space method with our recently developed algorithm for computing a null space basis matrix for a ``wide matrix. We further show that a direct elimination approach enhanced by careful pivoting can be effective in transforming the problem to an unconstrained sparse-dense least squares problem that can be solved with existing direct or iterative methods. We also present a number of solution variants that employ an augmented system formulation, which can be attractive when solving a sequence of related problems. Numerical experiments using problems coming from practical applications are used throughout to demonstrate the effectiveness of the different approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا