ترغب بنشر مسار تعليمي؟ اضغط هنا

The Transformation of the Superconducting Gap to an Insulating Pseudogap at a Critical Hole Density in the Cuprates

152   0   0.0 ( 0 )
 نشر من قبل Ye-Hua Liu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We apply the recent wavepacket formalism developed by Ossadnik to describe the origin of the short range ordered pseudogap state as the hole doping is lowered through a critical density in cuprates. We argue that the energy gain that drives this precursor state to Mott localization, follows from maximizing umklapp scattering near the Fermi energy. To this end we show how energy gaps driven by umklapp scattering can open on an appropriately chosen surface, as proposed earlier by Yang, Rice and Zhang. The key feature is that the pairing instability includes umklapp scattering, leading to an energy gap not only in the single particle spectrum but also in the pair spectrum. As a result the superconducting gap at overdoping is turned into an insulating pseudogap, in the antinodal parts of the Fermi surface.

قيم البحث

اقرأ أيضاً

The nature of the pseudogap phase remains a major barrier to our understanding of cuprate high-temperature superconductivity. Whether or not this metallic phase is defined by any of the reported broken symmetries, the topology of its Fermi surface re mains a fundamental open question. Here we use angle-dependent magnetoresistance (ADMR) to measure the Fermi surface of the cuprate Nd-LSCO. Above the critical doping $p^*$---outside of the pseudogap phase---we fit the ADMR data and extract a Fermi surface geometry that is in quantitative agreement with angle-resolved photoemission. Below $p^*$---within the pseudogap phase---the ADMR is qualitatively different, revealing a clear transformation of the Fermi surface. Changes in the quasiparticle lifetime across $p^*$ are ruled out as the cause of this transformation. Instead we find that our data are most consistent with a reconstruction of the Fermi surface by a $Q=(pi, pi)$ wavevector.
Recent excperiments (ARPES, Raman) suggest the presence of two distinct energy gaps in high-Tc superconductors (HTSC), exhibiting different doping dependences. Results of a variational cluster approach to the superconducting state of the two-dimensio nal Hubbard model are presented which show that this model qualitatively describes this gap dichotomy: One gap (antinodal) increases with less doping, a behavior long considered as reflecting the general gap behavior of the HTSC. On the other hand, the near-nodal gap does even slightly decrease with underdoping. An explanation of this unexpected behavior is given which emphasizes the crucial role of spin fluctuations in the pairing mechanism.
Motivated by the recent STM experiments of J.E. Hoffman et.al. and C. Howald et.al., we study the effects of weak translational symmetry breaking on the quasiparticle spectrum of a d-wave superconductor. We develop a general formalism to discuss peri odic charge order, as well as quasiparticle scattering off localized defects. We argue that the STM experiments in $Bi_2Sr_2CaCu_2O_{8+delta}$ cannot be explained using a simple charge density wave order parameter, but are consistent with the presence of a periodic modulation in the electron hopping or pairing amplitude. We review the effects of randomness and pinning of the charge order and compare it to the impurity scattering of quasiparticles. We also discuss implications of weak translational symmetry breaking for ARPES experiments.
We study the quantum transition from an antiferromagnet to a superconductor in a model for electron- and hole-doped cuprates by means of a variational cluster perturbation theory approach. In both cases, our results suggest a tendency towards phase s eparation between a mixed antiferromagnetic-superconducting phase at low doping and a pure superconducting phase at larger doping. However, in the electron-doped case the energy scale for phase separation is an order of magnitude smaller than for hole doping. We argue that this can explain the different pseudogap and superconducting transition scales in hole- and electron-doped materials.
We report measurements of the Seebeck effect in both the $ab$ plane ($S_{rm a}$) and along the $c$ axis ($S_{rm c}$) of the cuprate superconductor La$_{1.6-x}$Nd$_{0.4}$Sr$_{x}$CuO$_4$ (Nd-LSCO), performed in magnetic fields large enough to suppress superconductivity down to low temperature. We use the Seebeck coefficient as a probe of the particle-hole asymmetry of the electronic structure across the pseudogap critical doping $p^{star} = 0.23$. Outside the pseudogap phase, at $p = 0.24 > p^{star}$, we observe a positive and essentially isotropic Seebeck coefficient as $T rightarrow 0$. That $S > 0$ at $p = 0.24$ is at odds with expectations given the electronic band structure of Nd-LSCO above $p^{star}$ and its known electron-like Fermi surface. We can reconcile this observation by invoking an energy-dependent scattering rate with a particle-hole asymmetry, possibly rooted in the non-Fermi liquid nature of cuprates just above $p^{star}$. Inside the pseudogap phase, for $ p < p^{star}$, $S_{rm a}$ is seen to rise at low temperature as previously reported, consistent with the drop in carrier density $n$ from $n simeq 1 + p$ to $n simeq p$ across $p^{star}$ as inferred from other transport properties. In stark contrast, $S_{rm c}$ at low temperature becomes negative below $p^{star}$, a novel signature of the pseudogap phase. The sudden drop in $S_{rm c}$ reveals a change in the electronic structure of Nd-LSCO upon crossing $p^{star}$. We can exclude a profound change of the scattering across $p^{star}$ and conclude that the change in the out-of-plane Seebeck coefficient originates from a transformation of the Fermi surface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا