ترغب بنشر مسار تعليمي؟ اضغط هنا

Distinguishing between Communicating Transactions

56   0   0.0 ( 0 )
 نشر من قبل Vasileios Koutavas
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Communicating transactions is a form of distributed, non-isolated transactions which provides a simple construct for building concurrent systems. In this paper we develop a logical framework to express properties of the observable behaviour of such systems. This comprises three nominal modal logics which share standard communication modalities but have distinct past and future modalities involving transactional commits. All three logics have the same distinguishing power over systems because their associated weak bisimulations coincide with contextual equivalence. Furthermore, they are equally expressive because there are semantics-preserving translations between their formulae. Using the logics we can clearly exhibit subtle example inequivalences. This work presents the first property logics for non-isolated transactions.



قيم البحث

اقرأ أيضاً

68 - Ignacio Vissani 2016
Distributed software is becoming more and more dynamic to support applications able to respond and adapt to the changes of their execution environment. For instance, service-oriented computing (SOC) envisages applications as services running over glo bally available computational resources where discovery and binding between them is transparently performed by a middleware. Asynchronous Relational Networks (ARNs) is a well-known formal orchestration model, based on hypergraphs, for the description of service-oriented software artefacts. Choreography and orchestration are the two main design principles for the development of distributed software. In this work, we propose Communicating Relational Networks (CRNs), which is a variant of ARNs, but relies on choreographies for the characterisation of the communicational aspects of a software artefact, and for making their automated analysis more efficient.
98 - Richard M. Harris 2011
We investigate the uniqueness of so-called exotic structures on certain exact symplectic manifolds by looking at how their symplectic properties change under small nonexact deformations of the symplectic form. This allows us to distinguish between tw o examples based on those found in cite{maydanskiy,maydanskiyseidel}, even though their classical symplectic invariants such as symplectic cohomology vanish. We also exhibit, for any $n$, an exact symplectic manifold with $n$ distinct but exotic symplectic structures, which again cannot be distinguished by symplectic cohomology.
Number of known symbiotic stars (SySt) is still significantly lower than their predicted population. One of the main problems in finding complete population of SySt is the fact that their spectrum can be confused with other objects, such as planetary nebulae (PNe) or dense H II regions. The problem is reinforced by a fact that in significant fraction of established SySt the emission lines used to distinguish them from other objects are not present. We aim at finding new diagnostic diagrams that could help separate SySt from PNe. Additionally, we examine known sample of extragalactic PNe for candidate SySt. We employed emission line fluxes of known SySt and PNe from the literature. We found that among the forbidden lines in the optical region of spectrum, only the [O III] and [N II] lines can be used as a tool for distinguishing between SySt and PNe, which is consistent with the fact that they have the highest critical densities. The most useful diagnostic that we propose is based on He I lines which are more common and stronger in SySt than forbidden lines. All these useful diagnostic diagrams are electron density indicators that better distinguishes PNe and ionized symbiotic nebulae. Moreover, we found six new candidate SySt in the Large Magellanic Cloud and one in M81. If confirmed, the candidate in M81 would be the furthest known SySt thus far.
Quantum Hall states - the progenitors of the growing family of topological insulators -- are rich source of exotic quantum phases. The nature of these states is reflected in the gapless edge modes, which in turn can be classified as integer - carryin g electrons, fractional - carrying fractional charges; and neutral - carrying excitations with zero net charge but a well-defined amount of heat. The latter two may obey anyonic statistics, which can be abelian or non-abelian. The most-studied putative non-abelian state is the spin-polarized filling factor { u}=5/2, whose charge e/4 quasiparticles are accompanied by neutral modes. This filling, however, permits different possible topological orders, which can be abelian or non-abelian. While numerical calculations favor the non-abelian anti-Pfaffian (A-Pf) order to have the lowest energy, recent thermal conductance measurements suggested the experimentally realized order to be the particle-hole Pfaffian (PH-Pf) order. It has been suggested that lack of thermal equilibration among the different edge modes of the A-Pf order can account for this discrepancy. The identification of the topological order is crucial for the interpretation of braiding (interference) operations, better understanding of the thermal equilibration process, and the reliability of the numerical studies. We developed a new method that helps identifying the topological order of the { u}=5/2 state. By creating an interface between the two 2D half-planes, one hosting the { u}=5/2 state and the other an integer { u}=3 state, the interface supported a fractional { u}=1/2 charge mode with 1/2 quantum conductance and a neutral Majorana mode. The presence of the Majorana mode, probed by measuring noise, propagating in the opposite direction to the charge mode, asserted the presence of the PH-Pf order but not that of the A-Pf order.
Understanding whether dissipation in an open quantum system is truly quantum is a question of both fundamental and practical interest. We consider a general model of n qubits subject to correlated Markovian dephasing, and present a sufficient conditi on for when bath-induced dissipation can generate system entanglement and hence must be considered quantum. Surprisingly, we find that the presence or absence of time-reversal symmetry (TRS) plays a crucial role: broken TRS is required for dissipative entanglement generation. Further, simply having non-zero bath susceptibilities is not enough for the dissipation to be quantum. Our work also present an explicit experimental protocol for identifying truly quantum dephasing dissipation, and lays the groundwork for studying more complex dissipative systems and finding optimal noise mitigating strategies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا