ترغب بنشر مسار تعليمي؟ اضغط هنا

Anticorrelation between polar lattice instability and superconductivity in the Weyl semimetal candidate MoTe2

89   0   0.0 ( 0 )
 نشر من قبل Hidefumi Takahashi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The relation between the polar structural instability and superconductivity in a Weyl semimetal candidate MoTe2 has been clarified by finely controlled physical and chemical pressure. The physical pressure as well as the chemical pressure, i.e., the Se substitution for Te, enhances the superconducting transition temperature Tc at around the critical pressure where the polar structure transition disappears. From the heat capacity and thermopower measurements, we ascribe the significant enhancement of Tc at the critical pressure to a subtle modification of the phonon dispersion or the semimetallic band structure upon the polar-to-nonpolar transition. On the other hand, the physical pressure, which strongly reduces the interlayer distance, is more effective on the suppression of the polar structural transition and the enhancement of Tc as compared with the chemical pressure, which emphasizes the importance of the interlayer coupling on the structural and superconducting instability in MoTe2.



قيم البحث

اقرأ أيضاً

569 - F. C. Chen , X. Luo , R. C. Xiao 2015
Two-dimensional (2D) transition-metal dichalcogenide (TMDs) MoTe2 has attracted much attention due to its predicted Weyl semimetal (WSM) state and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that the superconductiv ity in MoTe2 single crystal can be much enhanced by the partial substitution of the Te ions by the S ones. The maximum of the superconducting temperature TC of MoTe1.8S0.2 single crystal is about 1.3 K. Compared with the parent MoTe2 single crystal (TC=0.1 K), nearly 13-fold in TC is improved in MoTe1.8S0.2 one. The superconductivity has been investigated by the resistivity and magnetization measurements. MoTe2-xSx single crystals belong to weak coupling superconductors and the improvement of the superconductivity may be related to the enhanced electron-phonon coupling induced by the S-ion substitution. A dome-shape superconducting phase diagram is obtained in the S-doped MoTe2 single crystals. MoTe2-xSx materials may provide a new platform for our understanding of superconductivity phenomena and topological physics in TMDs.
Here we report the observation of superconductivity in pressurized type-II Weyl semimetal (WSM) candidate TaIrTe4 by means of complementary high-pressure transport and synchrotron X-ray diffraction measurements. We find that TaIrTe4 shows superconduc tivity with transition temperature (TC) of 0.57 K at the pressure of ~23.8 GPa. Then, the TC value increases with pressure and reaches ~2.1 K at 65.7 GPa. In situ high-pressure Hall coefficient (RH) measurements at low temperatures demonstrate that the positive RH increases with pressure until the critical pressure of the superconducting transition is reached, but starts to decrease upon further increasing pressure. Above the critical pressure, the positive magnetoresistance effect disappears simultaneously. Our high pressure X-ray diffraction measurements reveal that, at around the critical pressure the lattice of the TaIrTe4 sample is distorted by the application of pressure and its volume is reduced by ~19.2%, the value of which is predicted to result in the change of the electronic structure significantly. We propose that the pressure-induced distortion in TaIrTe4 is responsible for the change of topology of Fermi surface and such a change favors the emergence of superconductivity. Our results clearly demonstrate the correlation among the lattice distortion, topological physics and superconductivity in the WSM.
119 - A. Tamai , Q. S. Wu , I. Cucchi 2016
We report a combined experimental and theoretical study of the candidate type-II Weyl semimetal MoTe2. Using laser-based angle-resolved photoemission we resolve multiple distinct Fermi arcs on the inequivalent top and bottom (001) surfaces. All surfa ce states observed experimentally are reproduced by an electronic structure calculation for the experimental crystal structure that predicts a topological Weyl semimetal state with 8 type-II Weyl points. We further use systematic electronic structure calculations simulating different Weyl point arrangements to discuss the robustness of the identified Weyl semimetal state and the topological character of Fermi arcs in MoTe2.
83 - Ying Xing , Zhibin Shao , Jun Ge 2018
The search for unconventional superconductivity in Weyl semimetal materials is currently an exciting pursuit, since such superconducting phases could potentially be topologically nontrivial and host exotic Majorana modes. The layered material TaIrTe4 is a newly predicted time-reversal invariant type II Weyl semimetal with minimum number of Weyl points. Here, we report the discovery of surface superconductivity in Weyl semimetal TaIrTe4. Our scanning tunneling microscopy/spectroscopy (STM/S) visualizes Fermi arc surface states of TaIrTe4 that are consistent with the previous angle-resolved photoemission spectroscopy (ARPES) results. By a systematic study based on STS at ultralow temperature, we observe uniform superconducting gaps on the sample surface. The superconductivity is further confirmed by electrical transport measurements at ultralow temperature, with an onset transition temperature (Tc) up to 1.54 K being observed. The normalized upper critical field h*(T/Tc) behavior and the stability of the superconductivity against the ferromagnet indicate that the discovered superconductivity is unconventional with the p-wave pairing. The systematic STS, thickness and angular dependent transport measurements reveal that the detected superconductivity is quasi-one-dimensional (quasi-1D) and occurs in the surface states. The discovery of the surface superconductivity in TaIrTe4 provides a new novel platform to explore topological superconductivity and Majorana modes.
Much of the dramatic growth in research on topological materials has focused on topologically protected surface states. While the domain walls of topological materials such as Weyl semimetals with broken inversion or time-reversal symmetry can provid e a hunting ground for exploring topological interfacial states, such investigations have received little attention to date. Here, utilizing in-situ cryogenic transmission electron microscopy combined with first-principles calculations, we discover intriguing domain-wall structures in MoTe2, both between polar variants of the low-temperature(T) Weyl phase, and between this and the high-T high-order topological phase. We demonstrate how polar domain walls can be manipulated with electron beams and show that phase domain walls tend to form superlattice-like structures along the c axis. Scanning tunneling microscopy indicates a possible signature of a conducting hinge state at phase domain walls. Our results open avenues for investigating topological interfacial states and unveiling multifunctional aspects of domain walls in topological materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا