ﻻ يوجد ملخص باللغة العربية
The transport properties of massless fermions in $3+1$ spacetime dimension have been in the focus of recent theoretical and experimental research. New transport properties appear as consequences of chiral anomalies. The most prominent is the generation of a current in a magnetic field, the so-called chiral magnetic effect leading to an enhancement of the electric conductivity (negative magnetoresistivity). We study the analogous effect for axial magnetic fields that couple with opposite signs to fermions of different chirality. We emphasize local charge conservation and study the induced magneto-conductivities proportional to an electric field and a gradient in temperature. We find that the magnetoconductivity is enhanced whereas the magneto-thermoelectric conductivity is diminished. As a side result we interpret an anomalous contribution to the entropy current as a generalized thermal Hall effect.
Torsional strain in Weyl semimetals excites a unidirectional chiral density wave propagating in the direction of the torsional vector. This gapless excitation, named the chiral sound wave, is generated by a particular realization of the axial anomaly
The axial magnetic effect (AME) is one of the anomalous transport phenomena in which the energy current is induced by an axial magnetic field. Here, we numerically study the AME for the relativistic Wilson fermion in the axial magnetic field and a tw
Recent experimental progress in condensed matter physics enables the observation of signatures of the parity anomaly in two-dimensional Dirac-like materials. Using effective field theories and analyzing band structures in external out-of-plane magnet
We carry out an explicit calculation of the vacuum polarization tensor for an effective low-energy model of monolayer graphene in the presence of a weak magnetic field of intensity $B$ perpendicularly aligned to the membrane. By expanding the quasipa
We present spatially- and spectrally-resolved photoluminescence measurements of indirect excitons in high magnetic fields. Long indirect exciton lifetimes give the opportunity to measure magnetoexciton transport by optical imaging. Indirect excitons