ﻻ يوجد ملخص باللغة العربية
The rich galaxy cluster Abell 2204 exhibits edges in its X-ray surface brightness at $sim 65$ and $35 {rm~ kpc}$ west and east of its center, respectively. The presence of these edges, which were interpreted as sloshing cold fronts, implies that the intracluster medium was recently disturbed. We analyze the properties of the intracluster medium using multiple Chandra observations of Abell 2204. We find a density ratio $n_{rm in}/n_{rm out} = 2.05pm0.05$ and a temperature ratio $T_{rm out}/T_{rm in} = 1.91pm0.27$ (projected, or $1.87pm0.56$ deprojected) across the western edge, and correspondingly $n_{rm in}/n_{rm out} = 1.96pm0.05$ and $T_{rm out}/T_{rm in} =1.45pm0.15$ (projected, or $1.25pm0.26$ deprojected) across the eastern edge. These values are typical of cold fronts in galaxy clusters. This, together with the spiral pattern observed in the cluster core, supports the sloshing scenario for Abell 2204. No Kelvin-Helmholtz eddies are observed along the cold front surfaces, indicating that they are effectively suppressed by some physical mechanism. We argue that the suppression is likely facilitated by the magnetic fields amplified in the sloshing motion, and deduce from the measured gas properties that the magnetic field strength should be greater than $24pm6$ $mu$G and $32pm8$ $mu$G along the west and east cold fronts, respectively.
We present an analysis of a 72 ks Chandra observation of the double cluster Abell 1644 (z=0.047). The X-ray temperatures indicate the masses are M500=2.6+/-0.4 x10^{14} h^{-1} M_sun for the northern subcluster and M500=3.1+/-0.4 x10^{14} h^{-1} M_sun
X-ray observations of many clusters of galaxies reveal the presence of edges in surface brightness and temperature, known as cold fronts. In relaxed clusters with cool cores, these edges have been interpreted as evidence for the sloshing of the core
We present line-of-sight gas sloshing first found in a cool core in a galaxy cluster. The galaxy cluster Abell 907 is identified as a relaxed cluster owing to its global X-ray surface brightness taken by the Chandra X-ray Observatory. The X-ray resid
Faraday rotation and synchrotron emission from extragalactic radio sources give evidence for the presence of magnetic fields extending over ~Mpc scales. However, the origin of these fields remains elusive. With new high-resolution grid simulations we
The distribution of metals in the intracluster medium (ICM) of galaxy clusters provides valuable information on their formation and evolution, on the connection with the cosmic star formation and on the effects of different gas processes. By analyzin