ﻻ يوجد ملخص باللغة العربية
We investigate the asymptotic rates of length-$n$ binary codes with VC-dimension at most $dn$ and minimum distance at least $delta n$. Two upper bounds are obtained, one as a simple corollary of a result by Haussler and the other via a shortening approach combining Sauer-Shelah lemma and the linear programming bound. Two lower bounds are given using Gilbert-Varshamov type arguments over constant-weight and Markov-type sets.
The $l$-th stopping redundancy $rho_l(mathcal C)$ of the binary $[n, k, d]$ code $mathcal C$, $1 le l le d$, is defined as the minimum number of rows in the parity-check matrix of $mathcal C$, such that the smallest stopping set is of size at least $
We consider network coding for networks experiencing worst-case bit-flip errors, and argue that this is a reasonable model for highly dynamic wireless network transmissions. We demonstrate that in this setup prior network error-correcting schemes can
A new family of binary linear completely transitive (and, therefore, completely regular) codes is constructed. The covering radius of these codes is growing with the length of the code. In particular, for any integer r > 1, there exist two codes with
We show that Reed-Muller codes achieve capacity under maximum a posteriori bit decoding for transmission over the binary erasure channel for all rates $0 < R < 1$. The proof is generic and applies to other codes with sufficient amount of symmetry as
We prove that, for the binary erasure channel (BEC), the polar-coding paradigm gives rise to codes that not only approach the Shannon limit but do so under the best possible scaling of their block length as a~function of the gap to capacity. This res