ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance of Particle Swarm Optimization on the fully-coherent all-sky search for gravitational waves from compact binary coalescences

303   0   0.0 ( 0 )
 نشر من قبل Thilina Shihan Weerathunga
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fully-coherent all-sky search for gravitational wave (GW) signals from the coalescence of compact object binaries is a computationally expensive task. Approximations, such as semi-coherent coincidence searches, are currently used to circumvent the computational barrier with a concomitant loss in sensitivity. We explore the effectiveness of Particle Swarm Optimization (PSO) in addressing this problem. Our results, using a simulated network of detectors with initial LIGO design sensitivities and a realistic signal strength, show that PSO can successfully deliver a fully-coherent all-sky search with < 1/10 the number of likelihood evaluations needed for a grid-based search.

قيم البحث

اقرأ أيضاً

While a fully-coherent all-sky search is known to be optimal for detecting gravitational wave signals from compact binary coalescences, its high computational cost has limited current searches to less sensitive coincidence-based schemes. Following up on previous work that has demonstrated the effectiveness of Particle Swarm Optimization in reducing the computational cost of this search, we present an implementation that achieves near real-time computational speed. This is achieved by combining the search efficiency of PSO with a significantly revised and optimized numerical implementation of the underlying mathematical formalism along with additional multi-threaded parallelization layers in a distributed computing framework. For a network of four second-generation detectors with $60$~min data from each, the runtime of the implementation presented here ranges between $approx 1.4$ to $approx 0.5$ times the data duration for network signal-to-noise ratios (SNRs) of $gtrsim 10$ and $gtrsim 12$, respectively. The reduced runtimes are obtained with small to negligible losses in detection sensitivity: for a false alarm rate of $simeq 1$~event per year in Gaussian stationary noise, the loss in detection probability is $leq 5%$ and $leq 2%$ for SNRs of $10$ and $12$, respectively. Using the fast implementation, we are able to quantify frequentist errors in parameter estimation for signals in the double neutron star mass range using a large number of simulated data realizations. A clear dependence of parameter estimation errors and detection sensitivity on the condition number of the network antenna pattern matrix is revealed. Combined with previous work, this paper securely establishes the effectiveness of PSO-based fully-coherent all-sky search across the entire binary inspiral mass range that is relevant to ground-based detectors.
While a fully-coherent all-sky search is known to be optimal for detecting signals from compact binary coalescences (CBCs), its high computational cost has limited current searches to less sensitive coincidence-based schemes. For a network of first g eneration GW detectors, it has been demonstrated that Particle Swarm Optimization (PSO) can reduce the computational cost of this search, in terms of the number of likelihood evaluations, by a factor of $approx 10$ compared to a grid-based optimizer. Here, we extend the PSO-based search to a network of second generation detectors and present further substantial improvements in its performance by adopting the local-best variant of PSO and an effective strategy for tuning its configuration parameters. It is shown that a PSO-based search is viable over the entire binary mass range relevant to second generation detectors at realistic signal strengths.
This paper presents the SPIIR pipeline used for public alerts during the third advanced LIGO and Virgo observation run (O3 run). The SPIIR pipeline uses infinite impulse response (IIR) filters to perform extremely low-latency matched filtering and th is process is further accelerated with graphics processing units (GPUs). It is the first online pipeline to select candidates from multiple detectors using a coherent statistic based on the maximum network likelihood ratio statistic principle. Here we simplify the derivation of this statistic using the singular-value-decomposition (SVD) technique and show that single-detector signal-to-noise ratios from matched filtering can be directly used to construct the statistic for each sky direction. Coherent searches are in general more computationally challenging than coincidence searches due to extra search over sky direction parameters. The search over sky directions follows an embarrassing parallelization paradigm and has been accelerated using GPUs. The detection performance is reported using a segment of public data from LIGO-Virgos second observation run. We demonstrate that the median latency of the SPIIR pipeline is less than 9 seconds, and present an achievable roadmap to reduce the latency to less than 5 seconds. During the O3 online run, SPIIR registered triggers associated with 38 of the 56 non-retracted public alerts. The extreme low-latency nature makes it a competitive choice for joint time-domain observations, and offers the tantalizing possibility of making public alerts prior to the merger phase of binary coalescence systems involving at least one neutron star.
Gravitational waves have only two polarization modes in General Relativity. However, there are six possible modes of polarization in metric theory of gravity in general. The tests of gravitational waves polarization can be tools for pursuing the natu re of space-time structure. The observations of gravitational waves with a world-wide network of interferometric detectors such as Advanced LIGO, Advanced Virgo and KAGRA will make it possible to obtain the information of gravitational wave polarization from detector signals. We study the separability of the polarization modes for the inspiral gravitational waves from the compact binary coalescences systematically. Unlike other waveforms such as burst, the binary parameters need to be properly considered. We show that the three polarization modes of the gravitational waves would be separable with the global network of three detectors to some extent, depending on signal-to-noise ratio and the duration of the signal. We also show that with four detectors the three polarization modes would be more easily distinguished by breaking a degeneracy of the polarization modes and even the four polarization modes would be separable.
The direct detection of gravitational waves (GWs) opened a new chapter in the modern cosmology to probe possible deviations from the general relativity (GR) theory. In the present work, we investigate for the first time the modified GW form propagati on from the inspiraling of compact binary systems within the context of $f(T)$ gravity in order to obtain new forecasts/constraints on the free parameter of the theory. First, we show that the modified waveform differs from the GR waveform essentially due to induced corrections on the GWs amplitude. Then, we discuss the forecasts on the $f(T)$ gravity assuming simulated sources of GWs as black hole binaries, neutron star binaries and black hole - neutron star binary systems, which emit GWs in the frequency band of the Advanced LIGO (aLIGO) interferometer and of the third generation Einstein Telescope (ET). We show that GWs sources detected within the aLIGO sensitivity can return estimates of the same order of magnitude of the current cosmological observations. On the other hand, detection within the ET sensitivity can improve by up to 2 orders of magnitude the current bound on the $f(T)$ gravity. Therefore, the statistical accuracy that can be achieved by future ground based GW observations, mainly with the ET detector (and planed detectors with a similar sensitivity), can allow strong bounds on the free parameter of the theory, and can be decisive to test the theory of gravitation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا