ﻻ يوجد ملخص باللغة العربية
Recent time-resolved spectroscopic experiments have indicated that vibronic coupling plays a vital role in facilitating the process of singlet fission. In this work, which forms the first article of a series, we set out to unravel the mechanisms underlying singlet fission through a vibronic exciton theory. We formulate a model in which both electronic and vibrational degrees of freedom are treated microscopically and non-perturbatively. Using pentacene as a prototypical material for singlet fission, we subject our theory to comparison with measurements on polarization-resolved absorption of single crystals, and employ our model to characterize the excited states underlying the absorption band. Special attention is given to convergence of photophysical observables with respect to the basis size employed, through which we determine the optimal basis for more expensive calculations to be presented in subsequent work. We furthermore evaluate the energetic separation between the optically prepared singlet excited state and the correlated triplet pair state, as well as provide a real-space characterization of the latter, both of which are of key importance in the discussion of fission dynamics. We discuss our results in the context of recent experimental studies.
Singlet fission, the molecular process through which photons are effectively converted into pairs of lower energy triplet excitons, holds promise as a means of boosting photovoltaic device efficiencies. In the preceding article of this series, we for
We extend the vibronic exciton theory introduced in our previous work to study singlet fission dynamics, in particular addressing recent indications of the importance of vibronic coupling in this process. A microscopic and non-perturbative treatment
Singlet exciton fission (SF), the conversion of one spin-singlet exciton (S1) into two spin-triplet excitons (T1), could provide a means to overcome the Shockley-Queisser limit in photovoltaics. SF as measured by the decay of S1 has been shown to occ
Organic semiconductors exhibit properties of individual molecules and extended crystals simultaneously. The strongly bound excitons they host are typically described in the molecular limit, but excitons can delocalize over many molecules, raising the
We study equilibrium and non-equilibrium properties of a two-level quantum dot close to the singlet-triplet transition. We treat the on-site Coulomb interaction and Hunds rule coupling perturbatively within the Keldysh formalism. We compute the spect