ﻻ يوجد ملخص باللغة العربية
We present a computer-assisted proof of heteroclinic connections in the one-dimensional Ohta-Kawasaki model of diblock copolymers. The model is a fourth-order parabolic partial differential equation subject to homogeneous Neumann boundary conditions, which contains as a special case the celebrated Cahn-Hilliard equation. While the attractor structure of the latter model is completely understood for one-dimensional domains, the diblock copolymer extension exhibits considerably richer long-term dynamical behavior, which includes a high level of multistability. In this paper, we establish the existence of certain heteroclinic connections between the homogeneous equilibrium state, which represents a perfect copolymer mixture, and all local and global energy minimizers. In this way, we show that not every solution originating near the homogeneous state will converge to the global energy minimizer, but rather is trapped by a stable state with higher energy. This phenomenon can not be observed in the one-dimensional Cahn-Hillard equation, where generic solutions are attracted by a global minimizer.
We study a graph based version of the Ohta-Kawasaki functional, which was originally introduced in a continuum setting to model pattern formation in diblock copolymer melts and has been studied extensively as a paradigmatic example of a variational m
The Ohta-Kawasaki model for diblock-copolymers is well known to the scientific community of diffuse-interface methods. To accurately capture the long-time evolution of the moving interfaces, we present a derivation of the corresponding sharp-interfac
Plane Couette flow transitions to turbulence for Re~325 even though the laminar solution with a linear profile is linearly stable for all Re (Reynolds number). One starting point for understanding this subcritical transition is the existence of invar
In this survey we present some recent results concerning computer-assisted proofs in partial differential equations, focusing in those coming from problems in incompressible fluids. Particular emphasis is put on the techniques, as opposed to the results themselves.
Equilibrium, traveling wave, and periodic orbit solutions of pipe, channel, and plane Couette flows can now be computed precisely at Reynolds numbers above the onset of turbulence. These invariant solutions capture the complex dynamics of wall-bounde