ترغب بنشر مسار تعليمي؟ اضغط هنا

The M33 Synoptic Stellar Survey. II. Mira Variables

60   0   0.0 ( 0 )
 نشر من قبل Lucas Macri
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the discovery of 1847 Mira candidates in the Local Group galaxy M33 using a novel semi-parametric periodogram technique coupled with a Random Forest classifier. The algorithms were applied to ~2.4x10^5 I-band light curves previously obtained by the M33 Synoptic Stellar Survey. We derive preliminary Period-Luminosity relations at optical, near- & mid-infrared wavelengths and compare them to the corresponding relations in the Large Magellanic Cloud.

قيم البحث

اقرأ أيضاً

We present photometry and moderate-resolution spectroscopy of the luminous red variable [HBS2006] 40671 originally detected as a possible nova in the galaxy M33. We found that the star is a pulsating Mira-type variable with a long period of 665 days and an amplitude exceeding 7 mag in the R band. [HBS2006] 40671 is the first confirmed Mira-type star in M33. It is one of the most luminous Mira-type variables. In the K band its mean absolute magnitude is M_K = -9.5, its bolometric magnitude measured in the maximum light is also extreme, M_bol = -7.4. The spectral type of the star in the maximum is M2e - M3e. The heliocentric radial velocity of the star is -475 km/s. There is a big negative excess (-210~km/s) in radial velocity of [HBS2006] 40671 relative to the average radial velocity of stars in its neighborhood pointing at an exceptional peculiar motion of the star. All the extreme properties of the new Mira star make it important for further studies.
We study the near-infrared properties of 690 Mira candidates in the central region of the Large Magellanic Cloud, based on time-series observations at JHKs. We use densely-sampled I-band observations from the OGLE project to generate template light c urves in the near infrared and derive robust mean magnitudes at those wavelengths. We obtain near-infrared Period-Luminosity relations for Oxygen-rich Miras with a scatter as low as 0.12 mag at Ks. We study the Period-Luminosity-Color relations and the color excesses of Carbon-rich Miras, which show evidence for a substantially different reddening law.
78 - Horace A. Smith 2013
Mira variables, RR Lyrae variables, and type II Cepheids all represent evolved states of low-mass stars, and long term observations have revealed that changes in pulsation period occur for each of these classes of variable. Most Mira variables show s mall or no period changes, but a few show large period changes that can plausibly be associated with thermal pulses on the asymptotic red giant branch. Individual RR Lyrae stars show period changes that do not accord with the predictions of stellar evolution theory. This may be especially true for RR Lyrae stars that exhibit the Blazhko effect. However, the average period changes of all of the RR Lyrae variables within a globular cluster prove a better but still imperfect match for the predictions of evolutionary theory. The observed period changes of short period type II Cepheids (BL Her stars) as well as those of long period type II Cepheids (W Vir stars) are in broad agreement with the rates of period changes expected from their evolutionary motions through the instability strip.
We have extracted a total of 1968 Mira variables from the OGLE-II data base in the Galactic bulge region. Among them, 1960 are associated with 2MASS sources, and 1541 are further identified with MSX point sources. Their photometric properties are com pared with those of Mira variables in the Large and Small Magellanic Clouds. We have found that mass-losing stars with circumstellar matter are reddened such that the colour dependence of the absorption coefficient is similar to that of interstellar matter. We also discuss the structure of the bulge. The surface number density of the bulge Mira variables is well correlated with the 2.2-micron surface brightness obtained by the COBE satellite. Using this relation, the total number of Mira variables in the bulge is estimated to be about 600,000. The logP-K relation of the Mira variables gives their space distribution which supports the well-known asymmetry of the bar-like bulge.
We report periods and JHKL observations for 648 oxygen-rich Mira variables found in two outer bulge fields at b=-7 degrees and l=+/-8 degrees and combine these with data on 8057 inner bulge Miras from the OGLE, Macho and 2MASS surveys, which are conc entrated closer to the Galactic centre. Distance moduli are estimated for all these stars. Evidence is given showing that the bulge structure is a function of age. The longer period Miras (log P > 2.6, age about 5 Gyr and younger) show clear evidence of a bar structure inclined to the line of sight in both the inner and outer regions. The distribution of the shorter period (metal-rich globular cluster age) Miras, appears spheroidal in the outer bulge. In the inner region these old stars are also distributed differently from the younger ones and possibly suggest a more complex structure. These data suggest a distance to the Galactic centre, R0, of 8.9 kpc with an estimated uncertainty of 0.4 kpc. The possible effect of helium enrichment on our conclusions is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا