ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of the flux growth rate in emerging active regions on the Sun

391   0   0.0 ( 0 )
 نشر من قبل Alexander Kutsenko
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We studied the emergence process of 42 active region (ARs) by analyzing the time derivative, R(t), of the total unsigned flux. Line-of-sight magnetograms acquired by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) were used. A continuous piecewise linear fitting to the R(t)-profile was applied to detect an interval, dt_2, of nearly-constant R(t) covering one or several local maxima. The averaged over dt_2 magnitude of R(t) was accepted as an estimate of the maximal value of the flux growth rate, R_MAX, which varies in a range of (0.5-5)x10^20 Mx hour^-1 for active regions with the maximal total unsigned flux of (0.5-3)x10^22 Mx. The normalized flux growth rate, R_N, was defined under an assumption that the saturated total unsigned flux, F_MAX, equals unity. Out of 42 ARs in our initial list, 36 event were successfully fitted and they form two subsets (with a small overlap of 8 events): the ARs with a short (<13 hours) interval dt_2 and a high (>0.024 hour^-1) normalized flux emergence rate, R_N, form the rapid emergence event subset. The second subset consists of gradual emergence events and it is characterized by a long (>13 hours) interval dt_2 and a low R_N (<0.024 hour^-1). In diagrams of R_MAX plotted versus F_MAX, the events from different subsets are not overlapped and each subset displays an individual power law. The power law index derived from the entire ensemble of 36 events is 0.69+-0.10. The rapid emergence is consistent with a two-step emergence process of a single twisted flux tube. The gradual emergence is possibly related to a consecutive rising of several flux tubes emerging at nearly the same location in the photosphere.

قيم البحث

اقرأ أيضاً

We use observations of line-of-sight magnetograms from Helioseismic and Magnetic Imager (HMI) on board of Solar Dynamics Observatory (SDO) to investigate polarity separation, magnetic flux, flux emergence rate, twist and tilt of solar emerging active regions. Functional dependence of polarity separation and maximum magnetic flux of an active region is in agreement with a simple model of flux emergence as the result of buoyancy forces. Our investigation did not reveal any strong dependence of emergence rate on twist properties of active regions.
We present a new method that combines the results of an oscillation study made in optical and radio observations. The optical spectral measurements in photospheric and chromospheric lines of the line-of-sight velocity were carried out at the Sayan So lar Observatory. The radio maps of the Sun were obtained with the Nobeyama Radioheliograph at 1.76 cm. Radio sources associated with the sunspots were analyzed to study the oscillation processes in the chromosphere-corona transition region in the layer with magnetic field B=2000 G. A high level of instability of the oscillations in the optical and radio data was found. We used a wavelet analysis for the spectra. The best similarities of the spectra of oscillations obtained by the two methods were detected in the three-minute oscillations inside the sunspot umbra for the dates when the active regions were situated near the center of the solar disk. A comparison of the wavelet spectra for optical and radio observations showed a time delay of about 50 seconds of the radio results with respect to optical ones. This implies a MHD wave traveling upward inside the umbral magnetic tube of the sunspot. Besides three-minute and five-minute ones, oscillations with longer periods (8 and 15 minutes) were detected in optical and radio records.
A time-distance helioseismic technique, similar to the one used by Ilonidis et al (2011), is applied to two independent numerical models of subsurface sound-speed perturbations to determine the spatial resolution and accuracy of phase travel time shi ft measurements. The technique is also used to examine pre-emergence signatures of several active regions observed by the Michelson Doppler Imager (MDI) and the Helioseismic Magnetic Imager (HMI). In the context of similar measurements of quiet sun regions, three of the five studied active regions show strong phase travel time shifts several hours prior to emergence. These results form the basis of a discussion of noise in the derived phase travel time maps and possible criteria to distinguish between true and false positive detection of emerging flux.
Major flares and coronal mass ejections (CMEs) tend to originate from the compact polarity inversion lines (PILs) in the solar active regions (ARs). Recently, a scenario named as collisional shearing is proposed by citet{Chintzoglou_2019} to explain the phenomenon, which suggests that the collision between different emerging bipoles is able to form the compact PIL, driving the shearing and flux cancellation that are responsible to the subsequent large activities. In this work, through tracking the evolution of 19 emerging ARs from their birth until they produce the first major flares or CMEs, we investigated the source PILs of the activities, i.e., the active PILs, to explore the generality of collisional shearing. We find that none of the active PILs is the self PIL (sPIL) of a single bipole. We further find that 11 eruptions originate from the collisional PILs (cPILs) formed due to the collision between different bipoles, 6 from the conjoined systems of sPIL and cPIL, and 2 from the conjoined systems of sPIL and ePIL (external PIL between the AR and the nearby preexisting polarities). Collision accompanied by shearing and flux cancellation is found developing at all PILs prior to the eruptions, with $84%$ (16/19) cases having collisional length longer than 18~Mm. Moreover, we find that the magnitude of the flares is positively correlated with the collisional length of the active PILs, indicating that the intenser activities tend to originate from the PILs with severer collision. The results suggest that the collisional shearing, i.e., bipole-bipole interaction during the flux emergence is a common process in driving the major activities in emerging ARs.
85 - R. Brajsa , I. Skokic , D. Sudar 2021
Aims. The main aim of the present analysis is to decipher (i) the small-scale bright features in solar images of the quiet Sun and active regions obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) and (ii) the ALMA correspondence o f various known chromospheric structures visible in the H-alpha images of the Sun. Methods. Small-scale ALMA bright features in the quiet Sun region were analyzed using single-dish ALMA observations (1.21 mm, 248 GHz) and in an active region using interferometric ALMA measurements (3 mm, 100 GHz). With the single-dish observations, a full-disk solar image is produced, while interferometric measurements enable the high-resolution reconstruction of part of the solar disk, including the active region. The selected quiet Sun and active regions are compared with the H-alpha (core and wing sum), EUV, and soft X-ray images and with the magnetograms. Results. In the quiet Sun region, enhanced emission seen in the ALMA is almost always associated with a strong line-of-sight (LOS) magnetic field. Four coronal bright points were identified, while other small-scale ALMA bright features are most likely associated with magnetic network elements and plages. In the active region, in 14 small-scale ALMA bright features randomly selected and compared with other images, we found five good candidates for coronal bright points, two for plages, and five for fibrils. Two unclear cases remain: a fibril or a jet, and a coronal bright point or a plage. A comparison of the H-alpha core image and the 3 mm ALMA image of the analyzed active region showed that the sunspot appears dark in both images (with a local ALMA radiation enhancement in sunspot umbra), the four plage areas are bright in both images and dark small H-alpha filaments are clearly recognized as dark structures of the same shape also in ALMA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا