ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of a 3D magnetic null point

54   0   0.0 ( 0 )
 نشر من قبل Mariarita Murabito
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe high resolution observations of a GOES B-class flare characterized by a circular ribbon at chromospheric level, corresponding to the network at photospheric level. We interpret the flare as a consequence of a magnetic reconnection event occurred at a three-dimensional (3D) coronal null point located above the supergranular cell. The potential field extrapolation of the photospheric magnetic field indicates that the circular chromospheric ribbon is cospatial with the fan footpoints, while the ribbons of the inner and outer spines look like compact kernels. We found new interesting observational aspects that need to be explained by models: 1) a loop corresponding to the outer spine became brighter a few minutes before the onset of the flare; 2) the circular ribbon was formed by several adjacent compact kernels characterized by a size of 1-2; 3) the kernels with stronger intensity emission were located at the outer footpoint of the darker filaments departing radially from the center of the supergranular cell; 4) these kernels start to brighten sequentially in clockwise direction; 5) the site of the 3D null point and the shape of the outer spine were detected by RHESSI in the low energy channel between 6.0 and 12.0 keV. Taking into account all these features and the length scales of the magnetic systems involved by the event we argued that the low intensity of the flare may be ascribed to the low amount of magnetic flux and to its symmetric configuration.


قيم البحث

اقرأ أيضاً

74 - Lucas A. Tarr , Mark Linton , 2016
We perform nonlinear MHD simulations to study the propagation of magnetoacoustic waves from the photosphere to the low corona. We focus on a 2D system with a gravitationally stratified atmosphere and three photospheric concentrations of magnetic flux that give rise to a magnetic null point with a magnetic dome topology. We find that a single wavepacket introduced at the lower boundary splits into multiple secondary wavepackets. A portion of the packet refracts towards the null due to the varying Alfven speed. Waves incident on the equipartition contour surrounding the null, where the sound and Alfven speeds coincide, partially transmit, reflect, and mode convert between branches of the local dispersion relation. Approximately $15.5%$ of the wavepackets initial energy ($E_{input}$) converges on the null, mostly as a fast magnetoacoustic wave. Conversion is very efficient: $70%$ of the energy incident on the null is converted to slow modes propagating away from the null, $7%$ leaves as a fast wave, and the remaining $23%$ (0.036$E_{input}$) is locally dissipated. The acoustic energy leaving the null is strongly concentrated along field lines near each of the nulls four separatrices. The portion of the wavepacket that refracts towards the null, and the amount of current accumulation, depends on the vertical and horizontal wavenumbers and the centroid position of the wavepacket as it crosses the photosphere. Regions that refract towards or away from the null do not simply coincide with regions of open versus closed magnetic field or the local field orientation. We also modeled wavepacket propagation using a WKB method and found that it agrees qualitatively, though not quantitatively, with the results of the numerical simulation.
Coronal rain is the well-known phenomenon in which hot plasma high in the Suns corona undergoes rapid cooling (from > 10^6 K to < 10^4 K), condenses, and falls to the surface. Coronal rain appears frequently in active region coronal loops and is very common in post-flare loops. This Letter presents discovery observations, which show that coronal rain is ubiquitous in the embedded bipole very near a coronal hole boundary. Our observed structures formed when the photospheric decay of active region leading sunspots resulted in a large parasitic polarity embedded in a background unipolar region. We observe coronal rain to appear within the legs of closed loops well under the fan surface, as well as preferentially near separatrices of the resulting coronal topology: the spine lines, null point, and fan surface. We analyze 3 events using SDO Atmospheric Imaging Assembly (AIA) observations in the 304, 171, and 211 {/AA} channels, as well as SDO Helioseismic and Magnetic Imager (HMI) magnetograms. The frequency of rain formation and the ease with which it is observed strongly suggests that this phenomenon is generally present in null-point topologies of this size scale. We argue that these rain events could be explained by the classic process of thermal nonequilibrium or via interchange reconnection at the null; it is also possible that both mechanisms are present. Further studies with higher spatial resolution data and MHD simulations will be required to determine the exact mechanism(s).
Two X-class solar flares occurred on 2017 September 6 from active region NOAA 12673: the first one is a confined X2.2 flare, and it is followed only $sim 3$ hours later by the second one, which is the strongest flare in solar cycle 24, reaching X9.3 class and accompanied with a coronal mass ejection. Why these two X-class flares occurred in the same position with similar magnetic configurations, but one is eruptive while the other is not? Here we track the coronal magnetic field evolution via nonlinear force-free field extrapolations from a time sequence of vector magnetograms with high cadence. A detailed analysis of the magnetic field shows that a magnetic flux rope (MFR) forms and grows gradually before the first flare, and shortly afterwards, the MFRs growth is significantly enhanced with a much faster rise in height, from far below the threshold of torus instability to above it, while the magnetic twist only increases mildly. Combining EUV observations and the magnetic field extrapolation, we found that overlying the MFR is a null-point magnetic topology, where recurrent brightening is seen after the first flare. We thus suggest a scenario to interpret the occurrence of the two flares. The first flare occurred since the MFR reached a high enough height to activate the null point, and its continuous expansion forces the null-point reconnection recurrently. Such reconnection weakens the overlying field, allowing the MFR to rise faster, which eventually crosses the threshold of torus instability and triggers the second, eruptive flare.
The magnetohydrodynamics of active region NOAA 11283 is simulated using an initial non-force-free magnetic field extrapolated from its photospheric vector magnetogram. We focus on the magnetic reconnections at a magnetic null point that participated in the X2.1 flare on 2011 September 6 around 22:21 UT (SOL2011-09-06T22:21X2.1) followed by the appearance of circular flare ribbons and coronal dimmings. The initial magnetic field from extrapolation displays a three-dimensional (3D) null topology overlying a sheared arcade. Prior to the flare, magnetic loops rise due to the initial Lorentz force, and reconnect at the 3D null, leading to expansion and loss of confined plasma that produce the observed pre-flare coronal dimmings. Further, the simulated dynamics documents the transfer of twist from the arcade to the overlying loops through reconnections, developing a flux rope. The non-parallel field lines comprising the rope and lower-lying arcades form an X-type geometry. Importantly, the simultaneous reconnections at the 3D null and the X-type geometry can explain the observed circular and parallel flare ribbons. Reconnections at the 3D null transform closed inner spine field lines into open field lines of the outer spine. The footpoints of these open field lines correspond to a ring-shaped coronal dimming region, tracing the dome. Further, the flux rope bifurcates because of these reconnections which also results in the generation of open magnetic field lines. The plasma loss along the open field lines can potentially explain the observed coronal dimming.
The aim of this work is to study the energy transport by means of MHD waves propagating in quiet Sun magnetic topology from layers below the surface to the corona. Upward propagating waves find obstacles, such as the equipartition layer with plasma b =1 and the transition region, and get converted, reflected and refracted. Understanding the mechanisms by which MHD waves can reach the corona can give us information about the solar atmosphere and the magnetic structures. We carry out two-dimensional numerical simulations of wave propagation in a magnetic field structure that consists of two vertical flux tubes separated by an arcade shaped magnetic field. This configuration contains a null point in the corona, that significantly modifies the behaviour of the waves. We describe in detail the wave propagation through the atmosphere under different driving conditions. We also present the spatial distribution of the mean acoustic and magnetic energy fluxes and the spatial distribution of the dominant frequencies in the whole domain. We conclude that the energy reaches the corona preferably along vertical magnetic fields, inside the flux tubes, and it has an acoustic nature. Most of the magnetic energy keeps concentrated below the transition region due to the refraction of the magnetic waves and the continuous conversion of acoustic-like waves into fast magnetic waves in the equipartition layer located in the photosphere. However, part of the magnetic energy reaches the low corona when propagating in the region where the arcades are located, but waves are sent back downwards to the lower atmosphere at the null point surroundings. This phenomenon, together with the reflection and refraction of waves in the TR and the lower turning point, act as a re-feeding of the atmosphere. In the frequency distribution, we find that high frequency waves can reach the corona outside the vertical flux tubes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا