ترغب بنشر مسار تعليمي؟ اضغط هنا

A novel image tag completion method based on convolutional neural network

129   0   0.0 ( 0 )
 نشر من قبل Jim Jing-Yan Wang
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the problems of image retrieval and annotation, complete textual tag lists of images play critical roles. However, in real-world applications, the image tags are usually incomplete, thus it is important to learn the complete tags for images. In this paper, we study the problem of image tag complete and proposed a novel method for this problem based on a popular image representation method, convolutional neural network (CNN). The method estimates the complete tags from the convolutional filtering outputs of images based on a linear predictor. The CNN parameters, linear predictor, and the complete tags are learned jointly by our method. We build a minimization problem to encourage the consistency between the complete tags and the available incomplete tags, reduce the estimation error, and reduce the model complexity. An iterative algorithm is developed to solve the minimization problem. Experiments over benchmark image data sets show its effectiveness.



قيم البحث

اقرأ أيضاً

In this paper, we propose a new data augmentation strategy named Thumbnail, which aims to strengthen the networks capture of global features. We get a generated image by reducing an image to a certain size, which is called as the thumbnail, and pasti ng it in the random position of the original image. The generated image not only retains most of the original image information but also has the global information in the thumbnail. Furthermore, we find that the idea of thumbnail can be perfectly integrated with Mixed Sample Data Augmentation, so we paste the thumbnail in another image where the ground truth labels are also mixed with a certain weight, which makes great achievements on various computer vision tasks. Extensive experiments show that Thumbnail works better than the state-of-the-art augmentation strategies across classification, fine-grained image classification, and object detection. On ImageNet classification, ResNet50 architecture with our method achieves 79.21% accuracy, which is more than 2.89% improvement on the baseline.
158 - Tung Nguyen , Kazuki Mori , 2016
In this paper, we present a novel approach that uses deep learning techniques for colorizing grayscale images. By utilizing a pre-trained convolutional neural network, which is originally designed for image classification, we are able to separate con tent and style of different images and recombine them into a single image. We then propose a method that can add colors to a grayscale image by combining its content with style of a color image having semantic similarity with the grayscale one. As an application, to our knowledge the first of its kind, we use the proposed method to colorize images of ukiyo-e a genre of Japanese painting?and obtain interesting results, showing the potential of this method in the growing field of computer assisted art.
In this paper, we present a new automatic diagnosis method of facial acne vulgaris based on convolutional neural network. This method is proposed to overcome the shortcoming of classification types in previous methods. The core of our method is to ex tract features of images based on convolutional neural network and achieve classification by classifier. We design a binary classifier of skin-and-non-skin to detect skin area and a seven-classifier to achieve the classification of facial acne vulgaris and healthy skin. In the experiment, we compared the effectiveness of our convolutional neural network and the pre-trained VGG16 neural network on the ImageNet dataset. And we use the ROC curve and normal confusion matrix to evaluate the performance of the binary classifier and the seven-classifier. The results of our experiment show that the pre-trained VGG16 neural network is more effective in extracting image features. The classifiers based on the pre-trained VGG16 neural network achieve the skin detection and acne classification and have good robustness.
130 - Haitong Tang , Shuang He , Xia Lu 2021
It is a challenging task to accurately perform semantic segmentation due to the complexity of real picture scenes. Many semantic segmentation methods based on traditional deep learning insufficiently captured the semantic and appearance information o f images, which put limit on their generality and robustness for various application scenes. In this paper, we proposed a novel strategy that reformulated the popularly-used convolution operation to multi-layer convolutional sparse coding block to ease the aforementioned deficiency. This strategy can be possibly used to significantly improve the segmentation performance of any semantic segmentation model that involves convolutional operations. To prove the effectiveness of our idea, we chose the widely-used U-Net model for the demonstration purpose, and we designed CSC-Unet model series based on U-Net. Through extensive analysis and experiments, we provided credible evidence showing that the multi-layer convolutional sparse coding block enables semantic segmentation model to converge faster, can extract finer semantic and appearance information of images, and improve the ability to recover spatial detail information. The best CSC-Unet model significantly outperforms the results of the original U-Net on three public datasets with different scenarios, i.e., 87.14% vs. 84.71% on DeepCrack dataset, 68.91% vs. 67.09% on Nuclei dataset, and 53.68% vs. 48.82% on CamVid dataset, respectively.
Convolutional Neural Networks (CNN) are state-of-the-art models for many image classification tasks. However, to recognize cancer subtypes automatically, training a CNN on gigapixel resolution Whole Slide Tissue Images (WSI) is currently computationa lly impossible. The differentiation of cancer subtypes is based on cellular-level visual features observed on image patch scale. Therefore, we argue that in this situation, training a patch-level classifier on image patches will perform better than or similar to an image-level classifier. The challenge becomes how to intelligently combine patch-level classification results and model the fact that not all patches will be discriminative. We propose to train a decision fusion model to aggregate patch-level predictions given by patch-level CNNs, which to the best of our knowledge has not been shown before. Furthermore, we formulate a novel Expectation-Maximization (EM) based method that automatically locates discriminative patches robustly by utilizing the spatial relationships of patches. We apply our method to the classification of glioma and non-small-cell lung carcinoma cases into subtypes. The classification accuracy of our method is similar to the inter-observer agreement between pathologists. Although it is impossible to train CNNs on WSIs, we experimentally demonstrate using a comparable non-cancer dataset of smaller images that a patch-based CNN can outperform an image-based CNN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا