ﻻ يوجد ملخص باللغة العربية
We study the excitation spectrum of two-component delta-function interacting bosons confined to a single spatial dimension, the Yang-Gaudin Bose gas. We show that there are pronounced finite-size effects in the dispersion relations of excitations, perhaps best illustrated by the spinon single particle dispersion which exhibits a gap at $2k_F$ and a finite-momentum roton minimum. Such features occur at energies far above the finite volume excitation gap, vanish slowly as $1/L$ for fixed spinon number, and can persist to the thermodynamic limit at fixed spinon density. Features such as the $2k_F$ gap also persist to multi-particle excitation continua. Our results show that excitations in the finite system can behave in a qualitatively different manner to analogous excitations in the thermodynamic limit. The Yang-Gaudin Bose gas is also host to multi-spinon bound states, known as $Lambda$-strings. We study these excitations both in the thermodynamic limit under the string hypothesis and in finite size systems where string deviations are taken into account. In the zero-temperature limit we present a simple relation between the length $n$ $Lambda$-string dressed energies $epsilon_n(lambda)$ and the dressed energy $epsilon(k)$. We solve the Yang-Yang-Takahashi equations numerically and compare to the analytical solution obtained under the strong couple expansion, revealing that the length $n$ $Lambda$-string dressed energy is Lorentzian over a wide range of real string centers $lambda$ in the vicinity of $lambda = 0$. We then examine the finite size effects present in the dispersion of the two-spinon bound states by numerically solving the Bethe ansatz equations with string deviations.
Pseudogap is a ubiquitous phenomenon in strongly correlated systems such as high-$T_{rm c}$ superconductors, ultracold atoms and nuclear physics. While pairing fluctuations inducing the pseudogap are known to be enhanced in low-dimensional systems, s
We study the quench dynamics of one dimensional bosons or fermion quantum gases with either attractive or repulsive contact interactions. Such systems are well described by the Gaudin-Yang model which turns out to be quantum integrable. We use a cont
The dynamic spin structure factor $mathcal{S}(k,omega)$ of a system of spin-1/2 bosons is investigated at arbitrary strength of interparticle repulsion. As a function of $omega$ it is shown to exhibit a power-law singularity at the threshold frequenc
For a decade the fate of a one-dimensional gas of interacting bosons in an external trapping potential remained mysterious. We here show that whenever the underlying integrability of the gas is broken by the presence of the external potential, the in
We describe the use of the exact Yang-Yang solutions for the one-dimensional Bose gas to enable accurate kinetic-energy thermometry based on the root-mean-square width of an experimentally measured momentum distribution. Furthermore, we use the stoch