ترغب بنشر مسار تعليمي؟ اضغط هنا

Shapes and features of the primordial bispectrum

131   0   0.0 ( 0 )
 نشر من قبل Jinn-Ouk Gong
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

If time-dependent disruptions from slow-roll occur during inflation, the correlation functions of the primordial curvature perturbation should have scale-dependent features, a case which is marginally supported from the cosmic microwave background (CMB) data. We offer a new approach to analyze the appearance of such features in the primordial bispectrum that yields new consistency relations and justifies the search of oscillating patterns modulated by orthogonal and local templates. Under the assumption of sharp features, we find that the cubic couplings of the curvature perturbation can be expressed in terms of the bispectrum in two specific momentum configurations, for example local and equilateral. This allows us to derive consistency relations among different bispectrum shapes, which in principle could be tested in future CMB surveys. Furthermore, based on the form of the consistency relations, we construct new two-parameter templates for features that include all the known shapes.



قيم البحث

اقرأ أيضاً

We study features in the bispectrum of the primordial curvature perturbation correlated with the reconstructed primordial power spectrum from the observed cosmic microwave background temperature data. We first show how the bispectrum can be completel y specified in terms of the power spectrum and its first two derivatives, valid for any configuration of interest. Then using a model-independent reconstruction of the primordial power spectrum from the Planck angular power spectrum of temperature anisotropies, we compute the bispectrum in different triangular configurations. We find that in the squeezed limit at k ~ 0.06/Mpc and k ~ 0.014/Mpc there are marginal 2sigma deviations from the standard featureless bispectrum, which meanwhile is consistent with the reconstructed bispectrum in the equilateral configuration.
We explore possible non-Gaussian features of primordial gravitational waves by constructing model-independent templates for nonlinearity parameters of tensor bispectrum. Our analysis is based on Effective Field Theory of inflation that relies on no p articular model as such and thus the results are quite generic. The analysis further reveals that chances of detecting squeezed limit tensor bispectrum are fairly higher than equilateral limit. We also discuss prospects of detectability in upcoming CMB missions.
The simplest interpretation of the Bicep2 result is that the scalar primordial power spectrum is slightly suppressed at large scales. These models result in a large tensor-to-scalar ratio $r$. In this work we show that the type of inflationary trajec tory favoured by Bicep2 also leads to a larger non-Gaussian signal at large scales, roughly an order of magnitude larger than a standard slow-roll trajectory.
Certain features in the primordial scalar power spectrum are known to improve the fit to the cosmological data. We examine whether bouncing scenarios can remain viable if future data confirm the presence of such features. In inflation, the fact that the trajectory is an attractor permits the generation of features. However, bouncing scenarios often require fine tuned initial conditions, and it is only the ekpyrotic models that allow attractors. We demonstrate, for the first time, that ekpyrotic scenarios can generate specific features that have been considered in the context of inflation.
Gravitational waves from inflation induce polarization patterns in the cosmic microwave background (CMB). It is known that there are only two types of non-Gaussianities of the gravitaional waves in the most general scalar field theories having second -order field equations. One originates from the inherent non-Gaussianity in general relativity, and the other from a derivative coupling between the Einstein tensor and a kinetic term of the scalar field. We calculate polarization bispectra induced by these non-Gaussianities by transforming them into separable forms by virtue of the Laplace transformation. It is shown that future experiments can detect only the new one if the latter coupling parameter takes an extremely large value, which, however, does not cotradict the current observational data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا