ترغب بنشر مسار تعليمي؟ اضغط هنا

Multipole superconductivity in nonsymmorphic Sr$_2$IrO$_4$

99   0   0.0 ( 0 )
 نشر من قبل Shuntaro Sumita
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Discoveries of marked similarities to high-$T_{text{c}}$ cuprate superconductors point to the realization of superconductivity in the doped $J_{text{eff}} = 1 / 2$ Mott insulator Sr$_2$IrO$_4$. Contrary to the mother compound of cuprate superconductors, several stacking patterns of in-plane canted antiferromagnetic moments have been reported, which are distinguished by the ferromagnetic components as $-++-$, $++++$, and $-+-+$. In this paper, we clarify unconventional features of the superconductivity coexisting with $-++-$ and $-+-+$ structures. Combining the group theoretical analysis and numerical calculations for an effective $J_{text{eff}} = 1 / 2$ model, we show unusual superconducting gap structures in the $-++-$ state protected by nonsymmorphic magnetic space group symmetry. Furthermore, our calculation shows that the Fulde-Ferrell-Larkin-Ovchinnikov superconductivity is inevitably stabilized in the $-+-+$ state since the odd-parity magnetic $-+-+$ order makes the band structure asymmetric by cooperating with spin-orbit coupling. These unusual superconducting properties are signatures of magnetic multipole order in nonsymmorphic crystal.

قيم البحث

اقرأ أيضاً

Using functional renormalization group we investigated possible superconductivity in doped Sr$_2$IrO$_4$. In the electron doped case, a $d^*_{x^2-y^2}$-wave superconducting phase is found in a narrow doping region. The pairing is driven by spin fluct uations within the single conduction band. In contrast, for hole doping an $s^*_{pm}$-wave phase is established, triggered by spin fluctuations within and across the two conduction bands. In all cases there are comparable singlet and triplet components in the pairing function. The Hunds rule coupling reduces (enhances) superconductivity for electron (hole) doping. Our results imply that hole doping is more promising to achieve a higher transition temperature. Experimental perspectives are discussed.
We study superconducting properties in multilayer thin films consisting of superconducting La$_{1.85}$Sr$_{0.15}$CuO$_4$ (LSCO) and Mott insulator Sr$_2$IrO$_4$ (SIO) and report enhanced superconductivity in optimized sample. These multilayer heteros tructures show an increase in superconducting transition temperature ($T_C$) as compared to the single layer LSCO films. The temperature dependence of SIO single layer is also investigated under thermal activation, Arrhenius-type behaviour, and variable-range hopping mechanisms for different temperature regimes. The decrease in $T_C$ beyond an optimum thickness of LSCO in these multilayers is analyzed in the framework of a model based on the assumption of induced superconductivity in SIO-LSCO interface due to the doping of La and/or oxygen deficiencies into SIO layers
438 - Yong Hu , Xiang Chen , S.-T. Peng 2019
The pseudogap, d-wave superconductivity and electron-boson coupling are three intertwined key ingredients in the phase diagram of the cuprates. Sr$_2$IrO$_4$ is a 5d-electron counterpart of the cuprates in which both the pseudogap and a d-wave instab ility have been observed. Here, we report spectroscopic evidence for the presence of the third key player in electron-doped Sr$_2$IrO$_4$: electron-boson coupling. A kink in nodal dispersion is observed with an energy scale of ~50 meV. The strength of the kink changes with doping, but the energy scale remains the same. These results provide the first noncuprate platform for exploring the relationship between the pseudogap, d-wave instability and electron-boson coupling in doped Mott insulators.
Motivated by the success of experimental manipulation of the band structure through biaxial strain in Sr$_2$RuO$_4$ thin film grown on a mismatched substrate, we investigate theoretically the effects of biaxial strain on the electronic instabilities, such as superconductivity (SC) and spin density wave (SDW), by functional renormalization group. According to the experiment, the positive strain (from lattice expansion) causes charge transfer to the $gamma$-band and consequently Lifshitz reconstruction of the Fermi surface. Our theoretical calculations show that within a limited range of positive strain a p-wave superconducting order is realized. However, as the strain is increased further the system develops into the SDW state well before the Lifshitz transition is reached. We also consider the effect of negative strains (from lattice constriction). As the strain increases, there is a transition from p-wave SC state to nodal s-wave SC state. The theoretical results are discussed in comparison to experiment and can be checked by further experiments.
Unambiguous identification of the superconducting order parameter symmetry of Sr$_2$RuO$_4$ has remained elusive for more than a quarter century. While a chiral $p$-wave ground state analogue to superfluid $^3$He-$A$ was ruled out only very recently, other proposed $p$-wave scenarios are still viable. Here, field-dependent $^{17}$O Knight shift measurements are compared to corresponding specific heat measurements, previously reported. We conclude that the shift results can be accounted for by the expected field-induced quasiparticle response only. An upper bound for the condensate magnetic response of $<10%$ of the normal state susceptibility is sufficient to exclude odd-parity candidates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا