ﻻ يوجد ملخص باللغة العربية
We present both exact and numerical results for the behavior of the Casimir force in $O(n)$ systems with a finite extension in one direction when the system is subjected to surface fields that induce helicity in the order parameter. We show that for such systems the Casimir force in certain temperature ranges is of the order of $L^{-2}$, both above and below the critical temperature, $T_c$, of the bulk system. An example of such a system would be one with chemically modulated bounding surfaces, in which the modulation couples directly to the systems order parameter. We demonstrate that, depending on the parameters of the system, the Casimir force can be either attractive or repulsive. The exact calculations presented are for the one dimensional $XY$ and Heisenberg models under twisted boundary conditions resulting from finite surface fields that differ in direction by a specified angle and the three dimensional Gaussian model with surface fields in the form of plane waves that are shifted in phase with respect to each other. Additionally, we present exact and numerical results for the mean field version of the three dimensional $O(2)$ model with finite surface fields on the bounding surfaces. We find that all significant results are consistent with the expectations of finite size scaling.
We study critical Casimir forces (CCF) $f_{mathrm C}$ for films of thickness $L$ which in the three-dimensional bulk belong to the Ising universality class and which are exposed to random surface fields (RSF) on both surfaces. We consider the case th
The critical Casimir force (CCF) arises from confining fluctuations in a critical fluid and thus it is a fluctuating quantity itself. While the mean CCF is universal, its (static) variance has previously been found to depend on the microscopic detail
The Casimir force between bodies in vacuum can be understood as arising from their interaction with an infinite number of fluctuating electromagnetic quantum vacuum modes, resulting in a complex dependence on the shape and material of the interacting
We show that graphene-dielectric multilayers give rise to an unusual tunability of the Casimir-Lifshitz forces, and allow to easily realize completely different regimes within the same structure. Concerning thermal effects, graphene-dielectric multil
When masless excitations are limited or modified by the presence of material bodies one observes a force atcing between them generally called Casimir force. Such excitations are present in any fluid system close to its true bulk critical point. We de